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Abstract

As software grows in size and complexity, modular designs are
increasingly adopted, leading to frequent interactions via shared
memory between components. This design however increases the
risk of vulnerabilities from uncontrolled memory access to shared
memory. Enforcing byte-level access control can mitigate these risks
by enabling byte-level permissions on complex shared objects and
their sub-elements. However, existing approaches face performance
limitations as they increase the granularity of control to byte level.
In this paper, we present BASTAG, a novel system that leverages
ARM’s Memory Tagging Extension (MTE) to tack this challenge. Al-
though MTE enforces tag-matching between pointers and memory,
its hardware-defined granularity is too coarse to support byte-level
control on its own. To address the inherent limitations of applying
MTE for nuanced access control, BASTAG incorporates a technique
known as shadow memory tagging that places separate, but associ-
ated MTE tags for the actual memory targets, allowing for more
flexible and finer access control with efficiency. We implemented a
BASTAG prototype on AArch64 hardware with MTE support and
evaluated it on three real-world use cases. Our results demonstrate
that BAsTAG significantly outperforms existing byte-level access
control mechanisms.
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1 Introduction

Modularization is a principal design methodology in modern soft-
ware that involves splitting the software into several distinct compo-
nents, henceforth referred to as domains. These domains, while sepa-
rate, are interconnected through numerous interactions. According
to the methodology, memory within these domains is classified as
either private or shared, each requiring different levels of access con-
trol. In a modular design, implementing access controls on memory
involves assigning domain-specific access permissions and comply-
ing with these permissions. Controlling access to private memory is
relatively straightforward, achieved by enforcing domain-exclusive
access permissions. However, controlling access to shared memory
is much more complex because shared memory requires the ap-
plication of non-exclusive, adequate access permissions that vary
depending on the domain types and the nature of their interac-
tions. Blunt access control on shared memory, such as granting
unrestricted access permissions (e.g., read-writable) to shared ob-
jects across all domains—contrary to the programmer’s intention
to limit access to a subset of domains or to enforce asymmetric
permissions—has led to numerous vulnerabilities in software sys-
tems. These vulnerabilities [19, 20, 24-26, 33] are prevalent across
diverse applications, including kernel drivers and multithreaded
applications, as further elaborated in Section 3. Due to the complex
interactions between domains and the intricate data structures and
their small-sized sub-elements, controlling access to shared mem-
ory calls for the delicate, exact management of access permissions
with byte-level granularity.

To date, byte-level access control mechanisms have been stud-
ied in different respects. One line of work maintains a copy of
the shared object in each domain’s private memory [55, 56]. They
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synchronize the private copies of shared objects by incorporating
additional code that transmits and receives messages between the
domains to appropriately reflect the changes in sub-elements of
the object. Unfortunately, this layer of synchronization manage-
ment incurs non-negligible overheads as it must be invoked for
every occurrence of domain interaction, such as cross-domain func-
tion calls. Another line of work uses the inline-reference monitor
(IRM) [17, 50, 53]. They adopt a data structure, known as the ac-
cess control list (ACL), that stores the metadata such as bounds
information and access permissions. The code is instrumented to
consult the ACL during memory access, using IRMs to enforce
control. This IRM-based approach provides a robust framework
for managing and controlling access, ensuring that operations on
memory are checked against predefined security rules. However, it
has a critical downside in that it suffers from too much performance
overhead for practical use even when the monitors are applied only
to the subset of accesses (e.g., writes). In response, some IRM-based
mechanisms sought assistance from the hardware to reduce the
overhead of permission checks [54, 84]. However, implementing
these solutions requires modifying the existing architecture by
adding hardware components, such as registers to hold metadata
and comparison/lookup logic, specifically tailored for these pur-
poses. This necessitates customized architectures, which must have
been realized either as an extension to open architectures like RISC-
V or through simulation using tools like Gem5. As a result, despite
their superior performance, it is practically hard to immediately
integrate these solutions into commodity products for real-world
deployment.

To address this deployment issue in hardware-assisted solutions,
this paper presents BASTAG, our efficient mechanism for byte-level
access control in shared memory. BASTAG leverages the Memory
Tagging Extension (MTE) [49], a hardware feature equipped in
recent commodity ARM processors [5, 6, 34]. Memory tagging,
which involves associating tags with pointers and physical mem-
ory, enables quick comparisons of tags during each memory access.
Access is granted only when the tags on the pointers and their
referents match (i.e., carry identical tags). Typically, MTE would tag
shared memory directly, requiring domains to access the memory
through pointers with a valid tag. Unfortunately, such straightfor-
ward use of MTE for access control introduces drawbacks in terms
of granularity and the number of supported access permissions. For
instance, the minimum granularity of access control is restricted
to the predefined granularity of memory blocks for tag compari-
son, which is 16 bytes for MTE. Aligning shared objects and even
their sub-elements to 16 bytes may alleviate this drawback, but
such alignment inhibits optimizations within complex data struc-
tures (e.g., unions) and urges code modifications across all domains
accessing the shared object, inducing major retrofitting efforts. Fur-
thermore, binary decision (i.e., tag match or mismatch) resulting
from tag comparisons restricts articulation to just two access per-
missions (i.e., accessible and non-accessible), which is insufficient
for supporting multiple policies such as read-only access.

To cope with all these complications associated with MTE, we
incorporate into BASTAG a new technique, called shadow mem-
ory tagging (SMT), which places associated but separate memory
tags, called shadow tags, that represent the domain’s access per-
missions for the target shared memory. To associate shadow tags
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with shared memory, SMT reserves tag regions that are assigned
per domain to attach shadow tags. When accessing shared mem-
ory, an additional memory operation is executed to consult the
corresponding tag regions, effectively initiating an efficient MTE
tag comparison that verifies the validity of the access against the
shadow tags. Capitalizing on SMT allows BASTAG to circumvent
the inherent limitations of MTE by configuring shadow tags in tag
regions for fine-grained access control. By applying shadow tags
per byte of the shared memory, BASTAG can exert precise byte-level
access control. Furthermore, BASTAG is designed to assign a pair of
tag regions for each domain, one for managing read accesses and
another for write accesses, thus supporting multi-permission (i.e.,
not-accessible, read-only, read-writable) access control for shared
memory across different domains.

To ease integration into existing systems, BAsTAG provides a
comprehensive framework that includes a library and a compiler.
The library offers a suite of APIs that developers can utilize to
manage access control tasks, such as configuring access policies
and granting or revoking access permissions. With the source code
equipped with these APIs, the compiler plays a crucial role in iden-
tifying shared memory access operations and augmenting them
by inserting instructions that perform tag comparisons against the
shadow tags within the appropriate tag regions. This integration
ensures that BASTAG can be seamlessly integrated to enhance secu-
rity and access control in systems making use of shared memory.
We implement a prototype of BASTAG on an off-the-shelf machine
equipped with ARMv9 CPUs and evaluate BASTAG on three realistic
use cases of memory sharing - between core kernel and extensions,
between the tasks on top of middleware, and between threads in
multithreaded applications. Our evaluation demonstrates the ver-
satility and practicality of BASTAG, incurring 3.2% overheads for
kernel extensions, 7.1% for inter-task communication messages,
and 5.75% for multithreaded application (e.g., Memcached), which
outperforms state-of-the-art IRM-based mechanism that supports
byte-level access control.

2 ARM Memory Tagging Extension

ARM Memory Tagging Extension (MTE) was first introduced in
ARMVS.5-A architecture, and is being built into the ARMv9 family
of processors as well [2]. It realizes the tagged architecture by intro-
ducing two types of tags - pointer tags and memory tags. Pointer
tags are implemented by utilizing the Top Byte Ignore (TBI) feature
introduced in ARMv8.1 [4]. TBI allows ARM processors to ignore
the top byte of pointers during address translation, thus enabling
the top byte to be used to store additional metadata. MTE uses
four bits (i.e., [59:56] bits of the address) to store the pointer tags.
Memory tags consist of four bits as well and are stored separately
from physical memory, where each is associated with a 16-byte
aligned memory block. On memory access, MTE checks whether
the pointer tag matches the memory block’s tag and raises an ex-
ception in case of a mismatch. In MTE’s synchronous mode, the
exception is raised immediately at the memory access. MTE in-
troduces additional instructions (e.g., LDG, STG) to load and store
memory tags.
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int ccci_ringbuf_read(int md_id,
struct ccci_ringbuf *ringbuf
unsigned char *buf, int read_size) {
unsigned int read, write, length;
// Offsets are retrieved from shared memory
read = (unsigned int)(ringbuf->rx_control.read);
// Msg is read outside of the shared memory buffer
CCIF_RBF_READ(ringbuf->buffer
buf, read_size, read, length);
return read_size;

}

int main(int argc, char =*argv[]) {

ros: :NodeHandle nh("~");

ros: :Subscriber time_ref_sub;

// Subscribe to topic stored in

// time_ref_topic parameter

time_ref_sub = nh.subscribe(time_ref_topic, 10,
time_ref_cb, ros::TransportHints().unreliable()
.maxDatagramSize(1024).reliable()
.tcpNoDelay(true));

return 0;

}

Listing 1: Simplified vulnerable function in kernel driver
from CVE-2022-21769 [25] caused by sub-field read.

// Main thread

void dispatch_conn_new(...) {
CQ_ITEM xitem = cqi_new(thread->ev_queue);
notify_worker(thread, item);

}

// Worker thread

static void thread_libevent_process(...) {
item = cq_pop(me->ev_queue);

3

Listing 2: Simplified main and worker thread from Mem-
cached 1.6.22. Object item is intended to be shared only be-
tween the main and selected worker threads.

3 Motivation

Shared memory generally refers to memory space that is allocated
for simultaneous access from separate domains. Each domain is as-
sociated with an access policy (i.e., read-only (ro), read-write (rw),
not-accessible (na)) that governs its interaction with the shared
memory. In this context, the concept of shared memory within
BASTAG is defined as memory space accessible by two or more
domains, each assigned with access policy other than na. This defi-
nition distinguishes shared memory from private memory, which
exclusively grants rw permission to a single domain while all other
domains are assigned with na permissions. We illustrate the need
of enforcing sophisticated access control, such as assigning byte-
granular per-domain permissions, on shared data with three exam-
ples from widely-used software.

Core Kernel and Extensions. The modern kernel interacts with
various drivers and extensions through complex shared objects.
While the sharing of these data structures is essential for enabling
the intended functionalities of the drivers, providing unrestricted
access to all fields within the shared structure can pose a potential
risk of compromising the core kernel. Listing 1 shows an exam-
ple of such a vulnerability, where the driver is granted with rw
permissions for the shared buffer (ringbuf) that includes the meta-
data (read) as its sub-element. This setup allows the driver to read
beyond the original shared memory region by modifying the meta-
data. To mitigate this vulnerability, it is crucial to impose read-only
access control on the driver regarding metadata sub-fields. Similar
vulnerabilities [19, 20, 22, 24, 27, 33] are reported as well, highlight-
ing the necessity of access control over byte-granular sub-elements
of the structures shared between the core kernel and its extensions.
Multithreaded Applications. In many multithreaded programs,
it is often necessary for shared objects to be accessible only to spe-
cific threads, rather than all threads, for security reasons. These
shared objects can vary in granularity, sometimes even at the byte
level, and their sizes can differ based on the attributes of the appli-
cations. Listing 2 demonstrates the use case of exclusive sharing in

Listing 3: Simplified vulnerable function in shared memory
driver in ROS middleware from CVE-2022-48198 [26].
Memcached [52], wherein the data object CQ_ITEM is intended to
be read-writable solely by the main thread and a designated worker
thread. Furthermore, it is necessary to enforce asymmetric access
permissions (e.g., rw for the main thread and ro for the worker
thread) at the byte-level to mitigate vulnerabilities which exploit
configuration variables that are accessible for modification by all
threads (e.g., CVE-2021-21309 [23]).

Inter-Task Communication. In widely-used middlewares such
as Robot Operating System (ROS) [60] and PX4 autopilot [63], task
management relies on communication via shared messages and
parameters [59, 65]. However, unregulated access to these shared
memory components poses security risks, including the leakage
of sensitive information from other tasks and the potential for
attacker-controlled behavior [28]. Listing 3 shows an example of
such a vulnerability, wherein all nodes (i.e., tasks) have access to
the shared time_ref_topic parameter. This parameter is utilized
by the middleware to determine the appropriate topic (i.e., mes-
sage type) to subscribe to for its operation. An adversarial node
could maliciously modify this parameter to subscribe to an attacker-
controlled topic, thereby triggering unintended operations that can
compromise the robot’s security. Additionally, our investigation
revealed that different tasks access only specific subsets of sub-
fields within the shared message. Granting unrestricted access to
all sub-fields poses a potential vulnerability, as a compromised
node could overwrite a sub-field not used in normal operation,
thereby affecting the behavior of other nodes. For example, the
VehicleRatesSetpoint message in PX4 is utilized by four tasks,
each accessing different subsets of sub-fields within the message
structure (e.g., bool reset_integral, float32 roll). Access con-
trol, such as enforcing ro permission to shared parameters after
initialization, and applying rw permission to specific sub-fields of
the message, is necessary to mitigate these vulnerabilities.

3.1 Existing Access Control Mechanisms

Page Table based Access Control. Various approaches have been
pursued to enforce access control by configuring permission flags
in PTs that map shared memory. The first generation of PT-based
access control mechanisms [13, 15, 62, 73] instantiated domains as
separate processes, assigning each domain its own PTs with differ-
ent permission flags set for shared memory. However, this approach
slowed down domain cooperation significantly as domains had to
rely on costly Inter-Process Communication (IPC) to communi-
cate. To address this limitation, the second generation of PT-based
access control mechanisms, such as Arbiter [79], SMV [36], and
lwC [46], introduced per-domain PT to enable access control within
a single process. However, supporting per-domain PTs necessitates
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extensive kernel-level modifications and is limited to a specific do-
main type: thread. The third generation of PT-based access control
mechanisms integrated hardware support [18, 31, 35, 76, 92], lever-
aging primitives like Intel Memory Protection Keys (MPK) [21],
ARM Memory Domains (MD) [10], and ARM Memory Protection
Unit (MPU) [11] to accelerate PT permission management. Unfor-
tunately, PT-based approaches inherently employ page granularity
(i.e., 4KB) for access control. While suitable for regulating access
to larger memory regions (e.g., private), this approach lacks the
capability to support intra-object access control. This limitation
arises because an object is allocated in a page, resulting in equal
access permissions being applied to all sub-fields of an object.
IRM/Shadow Memory based Access Control. Another line of
research, such as BGI [17] and LXFI [50], addresses access con-
trol through the adoption of inline reference monitors (IRM) for
memory access management. These mechanisms typically utilize
distinct access control lists (ACLs) to store the access policies cor-
responding to memory spaces of each domain. Upon memory ac-
cess, ACLs are consulted by IRMs to ensure adherence to the spe-
cific policies. IRM-based mechanisms build upon shadow memory
schemes [57, 70], which associate each byte of program memory
with metadata stored in shadow memory. In IRMs, the shadow mem-
ory specifically holds ACL entries, mapping each byte of program
memory to a corresponding ACL index. This mapping enables the
IRM to dynamically retrieve and enforce domain-specific permis-
sions during runtime. However, this design introduces substantial
performance overhead due to additional operations required be-
fore each memory access—specifically, computing the ACL entry
address, retrieving access permissions, and validating these permis-
sions. For instance, Listing 4 illustrates an IRM instruction sequence
employed by [17]. Initially, three instructions calculate the ACL (i.e.,
shadow memory) address that stores the permissions for the mem-
ory address contained in register X1 (Lines 2-4). The permissions
are then retrieved (Line 5) and checked (Line 6) before executing
the original memory access (Line 10). Depending on the specific
ACL implementation, additional instructions may be necessary to
handle exceptional situations, such as ACL conflicts (Line 8).
Message based Access Control. Message-based access control,
such as LXD [55] and LVD [56], maintains a copy of a shared object
in each domain’s private memory. To facilitate synchronization
of objects across domains, message-based access control employs
an Interface Definition Language (IDL) to specify the subset of an
object’s fields that will be marshaled across domains. Subsequently,
the IDL generates glue code, which acts as an interface between
domains interacting with shared objects. Functioning on the ba-
sis of remote procedure call (RPC) implementation, this glue code
transmits and receives messages to seamlessly manage synchroniza-
tion across multiple domains. This mechanism enables intra-object
access control but introduces notable performance overhead due
to additional glue code function calls, memcpy operations for mar-
shaling sub-fields, and frequent RPC-based synchronization during
domain interactions.

MTE-only Access Control. MTE-only access control is a mecha-
nism that straightforwardly utilizes MTE by tagging shared memory
and accessing it exclusively with pointers bearing a specific tag.
However, employing MTE in a one-dimensional manner encoun-
ters limitations inherent to the MTE architecture. Tag comparison
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// X1: target addr.

1

2 MOV X0, X1

3 ASR X0, X0, #0x2
4 TST X0, X0, #0x1C
5 LDR X0, [Xe]

6 CMP X0, #0x2

7 BEQ L1

s BL _slowCheck

9 L1:

10 LDR X0, [X1]

Listing 4: Instruction sequence of IRM used by [17].

Mechanism BG PAP MP SA LPO

PT-based X

IRM-based X
Msg-based b 4 X
MTE-only b 4 b 4 b 4 b 4

BasTAaG v v v v (4

Table 1: Comparison between Bastac and other access con-
trol mechanisms based on the requirements (Section 5).

results in a binary decision (i.e., tag match or mismatch), limiting
MTE-only access control to providing only two access policies.
Additionally, the mechanism fails to provide asymmetric access
permissions, as memory tags must be modified to express different
access permissions on different domains. Although one may re-tag
shared memory to change permissions, this approach hinders con-
current memory access by different domains, as a domain must
wait for the tag update before performing access. Moreover, tagging
directly applied to shared memory sets access control granularity
determined by MTE’s tag granularity, falling short of providing
access control on object sub-fields smaller than 16 bytes, as ac-
knowledged by other works on MTE as well [69, 71].

4 Threat Model

Assumptions. BASTAG is designed to provide access control on
memory that is shared by the domains composing complex soft-
ware, such as user programs and kernel extensions. As explained
previously, the memory accessible by domains is classified as either
shared or private. We assume that access control on private mem-
ory is achieved through domain isolation techniques such as soft-
ware fault isolation (SFI) [85, 86] or in-process isolation [38, 83, 88].
BASTAG is designed to complement existing private memory iso-
lation techniques, where the integration will be later explained
in detail at Section 6.4. To this end, we assume that domain isola-
tion techniques provide per-domain stack isolation and that the
integrity of BastaG APIs (Section 5.6) are guaranteed by SFI tram-
polines or in-process isolation call gates. We assume that the core
kernel (e.g., interrupt handlers) is trusted and that the OS enforces
standard DEP (i.e., WeX). We assume the hardware is trusted, and
thus exclude exploits targeting hardware vulnerabilities, such as
microarchitectural attacks [41, 42, 45], from the scope of this work.
Attacker Capabilities. We consider an adversary capable of com-
promising the domain through vulnerabilities such as buffer over-
flows and control flow subversion. Even so, BASTAG must prevent
domains from reaching shared memory not permitted to them.
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Figure 1: Overview of BasTag.

5 Design

Goal and Requirements. BASTAG aims to support byte-level
access control for shared memory by fulfilling the following re-
quirements that existing mechanisms (Section 3.1) fall short of
providing, as summarized in Table 1.

o Byte-level Granularity (BG). Memory sharing at a fine-grained,
sub-object level requires byte-level access control.

o Per-domain Access Policy (PAP). Access control on shared memory
requires different access permissions per domain.

o Multiple Policies (MP). Access control on shared memory requires
more than two policies (i.e., rw, ro, and na).

e Simultaneous Access (SA). Access control needs to support con-
current memory accesses from multiple domains.

e Low Performance Overhead (LPO). The above requirements must
be realized with reasonable runtime overheads.

5.1 BaAstAG Overview

BasTAG offers an efficient solution for implementing byte-level
multi-policy access control over memory objects shared between
distinct domains, leveraging MTE as depicted in Figure 1. As ex-
plained in Section 3.1, relying solely on MTE in a conventional
manner, such as directly attaching tags to target memory subject
to access control (i.e.,, shared memory), is insufficient due to MTE’s
limited tag granularity of 16 bytes and its binary permission grant-
ing system (either read-writable or not-accessible). To overcome
these limitations, BASTAG incorporates SMT, a technique that adds
a layer of indirection to manage memory tags containing access
permissions in a separate region. In detail, shadow tags, which are
MTE memory tags, represent the access permissions of domains
to shared memory in SMT (i.e., hold non-zero tag if accessible, and
hold tag zero if inaccessible). SMT reserves tag regions for each do-
main, where a block of tag region is associated with a byte of shared
memory. The shadow tags are then attached to the corresponding
virtual addresses of tag regions, thereby establishing a relationship
between the shadow tag and the shared memory. Subsequently,
whenever there is an access to shared memory in domains, BASTAG
performs an additional memory operation to consult the shadow
tag in the corresponding tag region. This operation is performed by
accessing a tag region address that corresponds to the target shared
memory, alongside a pointer tag identical to the one employed for
the shadow (memory) tags. Naturally, accessing the tag regions
triggers a MTE tag comparison using the shadow tags, determining
whether the access to the shared memory is permissible or not. It
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Figure 2: Shadow memory tagging. BAsTAG maps each byte
of shared memory to 16B of read tag region (®) and write tag
region (@). Shadow memory tags corresponding to the tag
region blocks are colored if the operation is allowed (®).

is worth noting here that BAsTaG enhances access control by con-
figuring shadow tags and tag regions. Specifically, BASTAG assigns
a shadow tag to each byte of the shared memory through the tag
region, facilitating byte-level access control. Additionally, BAsTac
allocates a pair of tag regions to each domain, each designated to
control read and write access to the shared memory, respectively,
thus supporting multi-policy access control for the shared memory
across domains.

To facilitate the implementation of SMT, BASTAG incorporates a
framework consisting of a compiler, a library, and a verifier. Ata
high level, developers are provided with a set of APIs (Section 5.6)
to manage access control, including tasks such as granting or revok-
ing access permissions. Upon receiving the source code annotated
with these APIs, BASTAG compiler (Section 6.1) initiates an analysis
phase to identify shared memory access operations (i.e., loads and
stores). Subsequently, the compiler augments the identified opera-
tions with instructions tailored to invoke tag comparisons against
shadow memory tags of the corresponding tag regions. The verifier
then verifies whether the additional instructions are instrumented
correctly to enforce access control. During runtime, when BAsTAG
library configures tag regions and shadow tags based on the API
calls made by developers, the instrumented code executes with
access control enabled.

5.2 Shadow Memory Tagging (SMT)

SMT, depicted in Figure 2, is the core technique of BASTAG, enabling
efficient byte-level multi-policy access control on shared memory
across domains. In this technique, access permissions of domains
to shared memory are represented as shadow tags, which are MTE
memory tags corresponding to virtual addresses of domain-specific
tag regions. Each domain is assigned two tag regions: a read tag re-
gion to manage read permissions, and a write tag region to manage
write permissions. To express permissions, shadow memory tags
are colored (i.e., hold non-zero tag) if the operation is permitted and
uncolored (i.e., hold tag 0) if the operation is not permitted. These
shadow tags are referenced in MTE’s tag comparisons by accessing
the tag region associated with the shared memory with a valid
pointer tag (i.e., the same tag number used in the shadow memory
tag) prior to the actual access to shared memory. As shadow tags are
uncolored if the shared memory is inaccessible, the tag comparison
will automatically fail if an illegal access is made, since the pointer
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tag holds a non-zero value when accessing tag regions to check
the permissions. Hence, BASTAG effectively enforces access control
on shared memory by assigning shadow tags to per-domain tag
regions according to the access policies.

Enabling Byte-level Multi-policy Access Control. Under shadow
memory tagging design, each byte of shared memory must be as-
sociated with a separate shadow tag to support byte-level access
control. To establish this relationship, BASTAG maps each byte of
shared memory to 16-byte tag region blocks, as depicted in Fig-
ure 2-O and @. Subsequently, BAstaG attaches shadow memory
tags representing access permissions to tag region blocks (Figure 2-
®), leveraging MTE’s capability to assign memory tags at a 16-byte
granularity, thereby enabling access control at a finer granularity of
a byte. BASTAG provides multi-policy access control (i.e., rw, ro, na)
on shared memory by allocating each domain a pair of tag regions
— one for controlling read operations and the other for controlling
write operations — and attaching shadow tags to each tag region
pair of domains. This allows BASTAG to express multiple policies by
appropriately setting the shadow tags attached to the read/write
tag regions according to the desired policy. For example, both the
shadow tags for the read and write tag region blocks corresponding
to the gray shared memory byte in Figure 2 are colored to express
rw. To disallow read or write operations, the shadow tags for the
respective tag regions are left uncolored, as depicted in Figure 2,
where the shadow tag matching the write tag region block for the
dashed shared memory byte is uncolored to express ro permission.
Shared Memory-to-Tag Region Mapping. To establish the map-
ping between shared memory and the tag region pairs of domains,
BaAsTAG manages fixed base addresses of the tag regions, which
are determined during the initial creation of tag regions for each
domain. The address of the tag region (addr;,) is calculated by
adding the base address (addrpqse) to a shifted address of the shared
memory (addrsp,,) - i.e., addr_tr = addr_base + addr_shm << 4.
Specifically, BASTAG shifts the shared memory address by 4 bits
to map each byte of the shared memory to a 16-byte block of a
tag region. This shifted address is then added to the base address
to compute the corresponding tag region address. The mapping
between shared memory and tag regions serves two main purposes.
First, when API calls are made in a domain to set access permissions
for the shared memory, BASTAG populates the associated tag regions
with shadow tags using this mapping. Second, when a domain ac-
cesses the shared memory, BAsTAG utilizes the mapping to enforce
access control by performing shadow tag-based comparisons on
the relevant tag regions.

5.3 Access Control Enforcement

Following the reservation of tag regions and the configuration of
shadow tags, BAsTAG effectively enforces access control using MTE,
wherein tag comparisons against shadow tags are automatically
executed upon enabling MTE. However, the tag regions are dis-
tinct from shared memory, implying that accessing shared memory
does not inherently trigger tag comparisons based on shadow tags.
To address this issue, BASTAG instruments each access to shared
memory by adding supplementary instructions that execute tag
comparisons using shadow tags. To be specific, BASTAG inserts two
instructions before memory operations (i.e., LDR, STR) targeting
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1 // Shared load instrumentation

2 BFI X21, X1, #4, #32 ; @
3 STR XZR, [X21] ; 0
4+ LDR Xo, [X1] ; ©
s // Shared store instrumentation
¢ BFI X21, X1, #4, #32

7 STR XZR, [X21]
s STR X0, [X1]

Listing 5: Instruction sequences instrumented for BASTAG’s
access control enforcement. BAsTAG computes associated tag
region address (@), checks access permission with dummy
store (@), and accesses shared memory if @ is passed (©).

the shared memory as depicted in Listing 5-@ and @. One instruc-
tion is employed to calculate the tag region address corresponding
to the target shared memory address (@), while the other serves to
invoke tag comparisons by accessing the tag region address (®). In
this instrumentation, two registers (i.e., X21 and X22) are reserved
to store the base addresses of read and write tag regions of a do-
main, respectively. Additionally, to ensure correct access control
checks through tag comparisons against shadow tags, the reserved
registers are tagged with a pointer tag whose tag number matches
that of the shadow tag (tag M). Reserved registers are set through
BASTAG APIs, as will be explained in detail at Section 5.6.
Computing Tag Region Address. Given a target shared mem-
ory address (X1 in Listing 5, where shared memory load before
the instrumentation is LDR X@, [X1]), corresponding tag memory
address is computed using a bit-field insert instruction (BFI, List-
ing 5-@). The instruction transfers a segment of the source register
to a specified location within the destination register while leaving
unrelated bits unchanged. Specifically, with a given syntax of BFI
X4, Xn, #lsb, #w, the instruction copies low-order w bits from the
source register X, into the same number of adjacent bits in the
destination register Xy, starting from the Isb-th bit. Utilizing the
BFI instruction, the calculation of the tag region address consoli-
dates two arithmetic operations (addition and left shift) into one
instruction. For example, when integrated with SFI mechanism that
configures the domain’s address space size to 4GB = 232, BFI is
instrumented with parameters w = 32 and Isb = 4 for the tag re-
gion address calculation. Destination register in the BFI instruction
depends on the type of shared memory access: X21 is used for loads,
holding the base address of the read tag region, while X22 is used
for stores, holding the base address of the write tag region.
Checking Access Permissions. After calculating and storing the
tag region address corresponding to the target shared memory to
the reserved register using BFI, BASTAG executes an additional STR
instruction with that register as a memory operand (Listing 5-@),
thereby triggering tag comparisons to enforce access control. Recall
that the tag regions of each domain have been marked with shadow
tags according to the access policies for the shared memory, and the
reserved registers have been assigned pointer tags identical to those
of the shadow memory tags (tag M). Therefore, tag comparisons
during execution determine accessibility, resulting in either a match
for accessible memory or a mismatch for inaccessible memory.
Advantages of MTE-based Instrumentation. BASTAG’s design
leverages SMT with shadow tag regions and enforces access control
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1 // Shared load instrumentation

2 BFI X21, X1, #4, #32 ; @
s BFI X23, X1, #0, #48 ; @
4+ STR XZR, [X21] ; ©
5 LDR X0, [X23] ; @
¢ BFI X21, XZR, #0, #36 ; @
7 // Shared store instrumentation
s BFI X22, X1, #4, #32

s BFI X23, X1, #0, #48

10 STR XZR, [X22]

11 STR X0, [X23]

12 BFI X22, XZR, #0, #36

Listing 6: BASTAG’s access control enforcement hardened
to prevent access control bypass. Added instructions com-
pared to the baseline instrumentation from Listing 5 are
highlighted. Target shared memory address is moved to the
reserved register X23 (®) which is used as an address operand
for the memory access (®). Tag region address is cleared
while retaining the pointer tag and base address of tag region
after the shared memory access (®).

by inserting instructions, resembling the IRM/shadow memory-
based mechanisms described in Section 3.1. The critical advan-
tage of BASTAG over purely software-based IRM/shadow memory
approaches lies in its use of MTE to validate access permissions
efficiently and transparently, without explicit retrieval or software-
based comparison. Specifically, referring back to Listing 4, which
shows the instruction sequence for IRM, BASTAG replaces both
the LDR instruction (Line 5)—used to retrieve access permissions
from shadow memory—and the subsequent CMP instruction (Line
6)—used to compare the permissions, which must wait until LDR
completes—with a single MTE-enabled dummy STR instruction tar-
geting the tag region address corresponding to the shared memory
byte. This instruction triggers MTE’s hardware-based tag check,
which implicitly validates the access against the tag represent-
ing the permission, thereby eliminating software overhead associ-
ated with permission retrieval and comparison. BASTAG uses the
STR instruction, rather than LDR, to trigger tag checks because
STR typically incurs lower performance penalties, benefiting from
micro-architectural store queues and buffers that allow writes to
be handled lazily without stalling the pipeline.

5.4 Preventing Access Control Bypass

In addition to enforcing access control, BASTAG prevents malicious
attempts aimed to perform illegal accesses to shared memory.

Preventing Instrumentation Circumvention. BASTAG prevents
malicious attempts aimed at circumventing the instrumentation to
perform illegal memory accesses. Consider Listing 5, where Line 2
computes the tag region address corresponding to X1 and Line 3
checks the access permissions. In this scenario, non-intended con-
trol flow to LDR with attacker-controlled value in X1 leads to illegal
memory access as LDR is performed using X1 as a memory operand.
BasTAG thwarts this attempt by conducting shared memory ac-
cess through an additional reserved register, X23, as depicted in
Listing 6-@. In order to replace the original target address register
with the reserved register, BASTAG instruments the shared memory
accesses with additional BFI instruction to copy the valid virtual
address space bits (i.e., 48 bits) from the original memory operand
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1 // Private load instrumentation
2 BFI X24, X1, #0, #48
3 LDR X0, [X24]

Listing 7: Instrumentation on private memory accesses to
prevent them from illegally accessing shared memory.

register (X1) to the reserved register (X23), as shown in Listing 6-@.
As an adversary cannot control the value of reserved register, X23,
landing on Listing 6-® or @ that bypass the preceding instructions
does not lead up to a practical attack.

In case of redirecting the control flow to Listing 6-®, where the
address in X1 is controlled by the attacker, the adversary can pass
the permission check conducted at @ if the valid tag region address
in X21 is maintained from the previous shared memory access.
BAsTAG mitigates such attacks by resetting the reserved register
utilized for tag region address following the shared memory access,
while preserving its pointer tag and base address of the tag region.
This process is accomplished through the BFI instruction with
XZR as the source register. For example, given that the tag region
address is computed by @, Listing 6-® clears the bottom 36-bits of
X21. Through this approach, an attacker is prevented from reusing
the valid tag region address, resulting in a fault at & due to cleared
X21 (or X22) should the control flow circumvent @ and reach @.
Preventing Misuse of Private Memory Accesses. In addition
to mitigating malicious attempts aimed at bypassing the access
control enforced by the instruction sequence, BAsTaG must also
prevent the exploitation of private memory accesses that aims to
gain unauthorized access to shared memory. Consider instruction,
LDR X0, [X1], where the private memory is accessed with X1
register value as an address. Note that, private memory accesses
are not instrumented as shared memory accesses. This enables an
attacker to manipulate the value stored in X1 to the address of
shared memory. Consequently, attacker can directly access shared
memory using memory instructions originally intended for access-
ing private memory. BASTAG thwarts this attempt by conducting
private memory access through an additional reserved register, X24,
as depicted in Listing 7. Similar to the instrumentation employed to
mitigate access control bypass attempts, private memory accesses
undergo augmentation through the addition of BFI instruction.
This instruction serves to transfer the valid virtual address space
bits from the original memory operand register (X1) to the reserved
register (X24).

The key difference between reserved registers X24 and X23, the
latter serving to hold the shared memory address, lies in their
respective assignment of distinct pointer tags. Specifically, X24
retains pointer tag zero for accessing private memory, while X23
retains non-zero pointer tag (e.g., tag N), distinct from the one
utilized for shadow tags (tag M), for accessing shared memory. As
will be explained in Section 5.6, the memory is tagged with tag
N when it is registered as shared memory through the Bastac
API. Since an adversary lacks control over the reserved register,
X24, unintended control flow landing on Line 3 in Listing 7 does
not lead up to a practical attack. Additionally, attacker is unable
to access shared memory by manipulating the original memory
operand register (X1), as private memory access occurs via X24
with a pointer tag zero, resulting a tag mismatch if X1 contains the
address of shared memory tagged with non-zero value N.
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/* ccci_ringbuf.c */
int ccci_ringbuf_read(
int md_id, struct ccci_ringbuf *ringbuf, ...){

bastag_enter (DRIVER_DOMAIN_ID);
bastag_register(ringbuf, BUF_SIZE);
if (ringbuf == NULL)

return -CCCI_RINGBUF_PARAM_ERR;
bastag_set(ringbuf, // NA: @, RO: 1, RW: 2
10 + sizeof (ringbuf->rx_control), 1);
1 // SIZE_OF_BUFFER: size of ringbuf->buffer
bastag_set(ringbuf+offset,SIZE_OF_BUFFER,2);
13 // Access shared memory
14 read = (int)(ringbuf->rx_control.read);
15 CCIF_RBF_READ(ringbuf->buffer, buf, read);
16 + bastag_exit();

© ® u e e W o -
+ o+

+

IS
+

18}

Listing 8: Example of using Bastac APIs for the simplified
vulnerable kernel driver described in Section 3. Access con-
trol is enforced on shared memory object ringbuf, imposing
read-only permission to byte-level sub-field (rx_control).

In summary, BASTAG reserves four general-purpose registers for
the system:

e X21:contains read tag region address and pointer tag M.
e X22:contains write tag region address and pointer tag M.
e X23:contains shared memory address and pointer tag N.
® X24:contains private memory address and pointer tag 0.

We find the impact of reserving up to four registers to be minimal
(Section 7), which is reported in recent work that reserves up to
five registers for their system as well [85].

5.5 Optimizations

Tag regions would incur memory overheads linear to the size of
shared memory due to shadow tag allocations. BASTAG supports
two optimizations to address the problem.

Tag Region Sharing. BASTAG supports a tag region sharing that
allows different domains to share the tag regions by mapping them
to the same physical memory to use the same memory tags. This en-
ables the domains that have the same access permissions to shared
memory (ie., shadow tags are attached to respective tag regions in
the same pattern) to use the same tag regions, thereby reducing the
memory necessary for the shadow tags. Tag region sharing operates
at a tag region page. BAsTAG identifies the tag region pages with
identical access permissions by managing a 2-bit bitmap for each
tag region page, where each 2 bits contains the information about
a 16B tag region block (i.e., 64B bitmap per page). These two bits
represent whether the 16B tag region block is tagged, untagged,
not permitted for tag region sharing, or not used for access control.
Upon a request to set the access permissions and enable tag region
sharing through the APIs (Section 5.6), BASTAG consults the bitmaps
and maps two tag region pages with identical pattern to the same
physical page. Note that, BAsTAG does not manage the bitmaps for
every tag region page but creates them on-demand when tag region
sharing is enabled for specific range of shared memory. Tag region
sharing shows its strength when multiple domains are assigned to
have the identical access permissions to the same shared memory
objects. For example, in case of inter-task communication where
the tasks have read permissions to shared messages but differ in
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write permissions, tag region sharing allows all read tag regions to
be shared to use the same physical memory.

Lazy Tag Region Mapping. Instead of mapping every tag region
page to physical memory, BASTAG initially maps only the tag region
page that needs to be tagged. Not mapping such pages does not
harm BASTAG’s access control as accessing unmapped tag region
will naturally fault, showing the same behavior as one will expect
from a invalid shared memory access check through the mapped
tag region with memory tag 0. BASTAG lazily maps such tag region
pages on-demand when the access permissions are updated (i.e.,
require the shadow tags to have non-zero value).

5.6 Bastac APIs

BasTAG provides the following APIs available for developers to
manage shared memory and access permissions:

void bastag_enter(int domain_id);

void bastag_exit();

bool bastag_register(void *ptr, size_t size);

bool bastag_set(void *ptr, size_t size, int p);

void bastag_enable(void *ptr, size_t size);

void bastag_destroy(void *ptr, size_t size);

To explain the API usage, we use the vulnerable kernel driver
from Section 3 as an example, where we employ BASTAG to enforce
access control on the memory object ringbuf, shared between the
driver and the main kernel. By registering the target object as shared
and granting appropriate access permission on its sub-field, the
hardened driver is restricted from modifying the shared object to
access the kernel’s private memory. Listing 8 shows the simplified
code snippet that contain the modifications (marked with "+").

The first two BASTAG enter and exit APIs are used at the start
and the end of shared memory access, registration, and access
permission setting as depicted in Line 5 and 16 in Listing 8. The
bastag_enter API updates the reserved registers, X21 and X22, to
hold the base addresses of tag regions with pointer tag M. Addition-
ally, pointer tags of reserved registers, X23 and X24, are configured
to N and zero, respectively. On its initial invocation, bastag_enter
reserves 4KB tag regions for the domain identified by domain_id
and records the associated (domain_id, base, size) tuple. This infor-
mation is later consulted to prevent overlaps when reserving tag
regions for additional domains. The bastag_exit API clears the re-
served registers to zero. Enter and exit APIs must be used in pairs
without nesting and the pair must be called inside a same function.
The bastag_register API registers the memory range from ptr
to ptr+size as shared. It maps the corresponding tag region pages,
as they may be tagged to grant access to the associated memory.
If the new registration overlaps an existing region, it allocates a
new tag region base and synchronizes its contents with the current
one. bastag_set serves to grant and revoke access permissions p
from ptr to ptr+size at a byte granularity. This is achieved by ap-
propriately tagging (with tag M) or untagging the shadow tags. For
example, given a shared memory object ringbuf, ro permission is
assigned to rx_control sub-field (Line 9), whereas rw permission
is granted to buffer sub-field. bastag_enable API enables the tag
region sharing (Section 5.5) to tag region for ptr to ptr+size. This API
is to be used after bastag_register and bastag_set to correctly
find the identical access permission patterns in the tag regions.
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// X1: holds original branch target address

1

2 BFI X24, X1, #0, #48
5 LDR XZR, [X24]

4+ BLR X24

Listing 9: Instrumentation on indirect jumps outside of enter-
exit API pairs to prevent illegal jumps to APIs.

bastag_destroy untags the domain’s tag region corresponding to
the [ptr, ptr+size]. The API also checks whether the corresponding
tag region page has tagged memory blocks, unmapping the page
if all blocks are untagged. In order to reflect the initialization and
modifications to tag regions correctly, register, set, enable, and
destroy APIs must be used inside the enter-exit pairs. The APIs
configure the tag region for appropriate domain through X21.
Preventing Malicious API Calls. Malicious API calls by manipu-
lating the target addresses of indirect jump/calls to alter the access
permissions can lead up to unauthorized shared memory accesses.
To cope with this threat, BASTAG first assigns a non-zero memory
tag to code blocks that calls the APIs according to programmer’s
intention and code blocks of APIs in BASTAG library. Then, BAsTaG
instruments the indirect jump/call instructions outside the enter-
exit API pairs as depicted in Listing 9. In the example, X1 holds
the original branch target address. BAsTAG first moves the target
address to X24 using BFI instruction (Line 2). This preserves the
valid address and fixes the pointer tag to zero by using the reserved
register X24. Next, LDR is inserted with X24 as the memory address
operand (Line 3), which triggers a tag comparison between pointer
tag zero and memory tag of the code block at branch target address.
As the code blocks for APIs are tagged with non-zero memory tag,
any malicious attempts to call the APIs will cause a tag mismatch.
The indirect jumps will be conducted through X24, thus preventing
BFI or LDR bypassing as the register is reserved, only after the tag
checking is passed (Line 4).

6 Implementation

BASTAG consists of a compiler to enforce access control and a veri-
fier to ensure that the machine code generated with the compiler
behaves as intended. Minor tweaks are made to the Linux kernel
to provide BAsTAG for kernel extensions as well. As the design
mandates register reservation for the proper functioning, BAsTac
supports instrumented versions of the LLVM/musl C/C++ toolchain
and libraries (musl-libc [66] v1.2.4, compiler-rt, libc++, libc++abi,
and libunwind [48]).

6.1 Bastac Compiler

Bastac compiler is implemented on top of SVF [74], a static value
flow analysis tool based on Anderson’s analysis, using LLVM 10.0.0.
BasTaG implements two passes for access control enforcement - one
at LLVM intermediate representation (IR) level to locate loads and
stores onto shared objects, and another at AArch64 LLVM backend
to insert necessary instructions. IR pass first locates initialization
sites of shared objects specified by API (i.e., bastag_register). The
pass then traverses the value flow graph (VFG) starting from the
initialization site to find accesses to the object. The VFG consists of
def-use chains of the values (i.e., pointers/objects), thereby having
load and store IRs related to the tracked value as its graph nodes. As
a result, VFG traversal allows BASTAG to locate the accesses to the
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objects of interest - shared objects in this case. To inspect shared
object accesses across modules (i.e., files), BASTAG takes a similar
approach as in KSplit [37] that analyzes shared data between core
kernel and device drivers. BASTAG first collects the types of objects
(i.e., struct types) that are initialized as shared objects from all
modules. Next, struct types that are accessible transitively through
function parameters are collected. Objects of the types that appear
in both steps above are considered as shared and go through VFG
traversal when they are found as function arguments. Additionally,
SVF is modified to insert a virtual edge between PtrToInt and
IntToPtr instruction since the original SVF terminates the value
flow when the pointer is converted to int data type and recognizes
conversion back to a pointer as a new allocation. The load and store
IR instructions found during the traversal are marked with metadata
to pass the information to the compiler backend. The metadata is
propagated by modifying the instruction selection (ISel) pass to
convey IR metadata to emitted backend instructions. Lastly, BAstac
backend pass locates instructions with metadata and inserts access
control instructions accordingly. Additionally, BAsTAG compiler
checks whether all enter and exit API pairs are properly closed
by constructing a a control flow graph and exploring the code
path with enter API as an entry point. This check is sound, as the
enter-exit pair must be called inside a same function.

6.2 BASTAG Verifier

BasTAG adapts the verifier offered by the latest SFI framework for
ARM [85] which utilizes the Binary Ninja disassembler [12], an ELF
reader, and ARM’s Machine Readable Specification (MRS) [9] to
verify the following properties:

e Memory accesses that use X23 as a memory operand register
have correct instrumentation as described in Listing 6.

e Memory accesses that use X24 as a memory operand register is
conducted after correct BFI instrumentation.

® X21-X24 are only modified through the Bastag APIs.

o Instructions for manipulating MTE memory tags, such as LDG
and STG, are solely employed by the Bastac APIs.

o Indirect calls and returns that uses X23 is conducted after correct
BFI/LDR instrumentation.

6.3 Tag Regions for Kernel Use Case

BASTAG reserves the address space for tag regions by resizing the
vmalloc region that is used to allocate virtually contiguous memory.
The prototype implementation resizes the region to reserve 1TB for
BASTAG, by adjusting VMALLOC_END constant in the kernel source.
Additionally, BAsTac makes use of a custom page mapping function
to allocate tag regions within the reserved address space, thereby
avoiding collision with any other normal kernel allocations.

6.4 Integration with Isolation Mechanisms

We describe the integration of BASTAG into two prominent isola-
tion techniques — Software Fault Isolation (SFI) and Page Table
(PT)-based mechanisms. Later in Section 7.5, we demonstrate the
integration of BASTAG into the latest state-of-the-art SFI [85].

Integration with SFI. SFI techniques revolve around instrument-
ing every memory access within the domain to confine them within
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a predefined region, commonly referred to as the sandbox [43, 61,
67, 78, 85, 87]. This is typically accomplished by inserting addi-
tional instruction(s) preceding the memory access. Upon integra-
tion, BASTAG supersedes such instrumentation for shared memory,
replacing it with the instruction sequence described in Listing 6.
For private memory accesses, BASTAG leverages X24 (Section 5.3)
in addition to the original instrumentation for SFI. As a result, the
isolation model is modified to allow access to shared memory un-
der the control of BASTAG, while maintaining isolation for private
IMemory accesses.

Integration with PT-based Isolation. PT-based techniques allo-
cate a group of pages exclusively to a specific domain [18, 83, 92].
In this scheme, shared memory functionality is achieved by des-
ignating a page to be accessible from multiple domains. In this
context, the integration of BASTAG is straightforward, requiring in-
strumentation to be applied to private and shared memory accesses
as described in Section 5. Consequently, BASTAG refines the level of
access control from page-level to byte-level while simultaneously
enforcing different permissions across multiple domains.

7 Evaluation

We evaluate BASTAG using both micro and macro benchmarks. For
macro benchmarks, we present three case studies that represent
the real world usage scenarios of BAsTAG. Moreover, we assess
the performance of BAstac when integrated with the latest SFI
technique using SPEC2017rate. All experiments are built with -02.
Experimental Setup. We conduct our experiments on an Pixel
8 [34] with 2.45GHz ARMv9.0-A Cortex-A715 quad-core processor
and 8GB RAM. We use Linux kernel version 5.15.110 as an OS. All
analysis and instrumentations are applied using the LLVM 10.0.0
compiler framework [47] and SVF commit version @a03400e.
Comparison Systems. In addition to the native baseline (i.e., no
access control), we compare BASTAG with a message-based scheme
and a software-only IRM-based solution described in Section 3.1.
The message-based approach maintains per-domain private copies
of shared objects, synchronizing them via memcpy on domain cross-
ings, and requires RPC for multi-domain coordination. For the
IRM-based solution, we emulate BGI [17] on ARM by porting its
x86 permission-checking sequence (CheckRight) to equivalent ARM
instructions (Listing 4). Our emulation captures BGI’s optimal over-
heads, excluding failure-handling paths.

7.1 Micro-benchmarks

Access Control Overheads. We measure the cost of enforcing
access control on shared memory by timing 100 per-byte reads of a
256-byte block across different mechanisms. For BAsTac and IRM-
based schemes, each read is instrumented with the corresponding
instruction sequence. For message-based schemes, the block is first
copied to a private buffer using memcpy. To isolate overheads, we
flush the cache on each iteration and use the cntvct_el@ regis-
ter [7] to record timing. The benchmark runs 100 times (10,000
reads total), and we report average cycles in Table 2. BASTAG in-
curs 8.1% overhead compared to a baseline with no access control,
outperforming IRM-based enforcement (45.9%) due to reduced in-
struction count and lack of ACL lookup latency. Message-based
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Mechanism ‘ Baseline IRM-based Msg-based BasTac

ACounter | 37 54 78 40

Table 2: Access control overheads.

| 32B 64B  128B 256B 512B

IRM-based | 4ms 8ms 12ms 21ms 45ms
Msg-based | 82ms 82ms 8lms 82ms 8lms
BasTac 3ms 6ms 10ms 17ms 32ms

Table 3: Access permission update overheads.

schemes show over 2x slowdown from memcpy overhead, even
without marshalling glue code—making this a best-case for them.
Overheads of Changing Access Permissions. We evaluate
the cost of changing byte-granular access permissions from rw
to ro over varying shared memory sizes. BAsTAG performs this by
untagging memory in the write tag region, while the IRM-based
scheme emulates ACL updates. For message-based schemes, we
use mprotect, as their glue code cannot be dynamically modified.
Each result is averaged over 100,000 runs. As shown in Table 3,
BASTAG achieves the lowest latency for per-byte permission up-
dates. Its overhead is comparable to IRM-based schemes, as both
rely on memory stores. While BASTAG ’s cost scales with memory
size, it outperforms alternatives up to 512 bytes. For BASTAG, the
evaluation untags the memory tags in the write tag region while
for IRM-based scheme, we emulate the code sequence that updates
the access control list. Table 3 shows the results.

Comparison vs. SW-only Shadow Memory-based Schemes.
Additionally, we evaluate the performance benefits of MTE-based
instrumentation over software-only shadow memory-based access
control (as described in Section 5.3), by measuring the execution
cycles of three instruction sequences used to enforce access control
under both cache-hit and cache-miss scenarios:

e LDR: An idealized software-only shadow memory implementa-
tion, where the shadow memory holds the target memory address
if access is permitted and NULL otherwise. A subsequent access
using the loaded address will trigger a fault if the access is invalid.

e LDR+CMP: A typical implementation where access permissions
are explicitly loaded from shadow memory and compared against
a predefined value to determine whether the access is valid.

o STR with MTE enabled: BASTAG, where the STR instruction trig-
gers a hardware-enforced tag check via MTE, implicitly validating
the access based on the tag associated with the memory location.

Figure 3-(a) and (b) show the cntvct_el@ cycles required to ex-
ecute each instruction sequence 1,000 times under cache-hit and
cache-miss conditions, respectively. Under a cache hit, LDR incurs
1.6x more cycles than STR, and 1.68x more under a cache miss. In
both scenarios, LDR+CMP exhibits even higher overhead due to the
additional comparison, taking over 1.7x more cycles. These results
indicate that BAsTaG’s MTE-based instrumentation outperforms
software-only shadow memory schemes, benefiting from implicit
hardware tag checks and microarchitectural store buffers that defer
stores without stalling the pipeline. We further compare the relative
overhead of LDR+CMP plus N additional instructions (N = 0, 1, 2, 3),
modeling the ACL lookup cost typical in shadow memory schemes
(e.g., [17]), against BASTAG ’s BFI+STR, as shown in Figure 3-(c). As
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Figure 3: BasTtaGc compared to software-only shadow
memory-based schemes in terms of cycles taken for different
instruction sequences under (a) cache hit and (b) cache miss.

STR  STG (Bastag) Relative Overhead

Cache Hit 14 14 < 1%
Cache Miss 1457 1484 1.85%

Table 4: Cost of access control updates in terms of cycles.
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Figure 4: Cost of register reservation on cryptographic code.
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expected, the overhead increases with each additional instruction,
reaching up to 1.93x under cache miss.

We also evaluate the cost of BASTAG’s access control updates via
memory tag assignment (i.e., STG) compared to updating shadow
memory via STR, under both cache-hit and cache-miss conditions,
as shown in Table 4. The results show that assigning a memory tag
incurs a similar number of cycles as a regular memory store, with
less than 1% overhead under a cache hit and only 1.85% under a
cache miss—indicating that the difference is negligible in practice.
Impact of Register Reservation. We evaluate the impact of reg-
ister reservation using AArché4cryptolib [8] and OpenSSL [75]. For
AArché64cryptolib, we reserve registers not used by its inline assem-
bly to avoid interference, and run AES-CBC-128 and AES-GCM-128
over varying input sizes. As shown in Figure 4-(a), which reports
normalized execution time (lower is better), the overhead is mod-
est—5.3% for CBC and 6.8% for GCM. To examine a extreme-register-
pressure scenario, we benchmark OpenSSL compiled with -no-asm
(sw-only) with and without register reservation. Figure 4-(b) shows
normalized throughput (higher is better): removing assembly re-
duces performance to 0.18x, and reserving registers lowers it further
to 0.11x. This represents a worst-case scenario. In practice, such
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Figure 6: Throughput and memory utilization of nullnet.

high register pressure is rare and localized, while BASTAG targets
general-purpose code with significantly lower pressure.

Impact of Optimizations. We evaluate the impact of optimiza-
tions using a microbenchmark in which messages are read by vary-
ing numbers of domains. Each thread represents a domain with its
own read and write tag regions. We allocate one million 256B mes-
sages, each writable by a single domain and read-only for the others,
evenly distributing writable messages across domains. Threads with
write access read messages byte-by-byte. We measure the maximum
RSS after processing (Figure 5). Without optimizations, memory
overhead grows with the number of domains due to per-domain tag
region mappings. Lazy tag region mapping reduces this by avoiding
write mappings for read-only messages. Tag region sharing further
reduces overhead by mapping identical read/write tag regions to
the same physical page when access permissions are uniform across
domains, yielding a 1.21x reduction at 32 domains. This benchmark
assumes all memory is shared, excluding private allocations, to
stress tag region overhead.

7.2 Case Study 1: Kernel and Extensions

We evaluate the cost of enforcing access control between the kernel
and extensions using two device drivers, nullblk and nullnet,
both commonly used to assess driver isolation mechanisms [55, 56].
These allow us to stress-test BAsTac without hardware constraints.
Shared structure accesses are instrumented for both BAsTAaG and
an IRM-based scheme. For comparison, we implement a message-
based synchronization mechanism by extending the marshalling
layer from LVD [56]. Leveraging Ksplit [37] to identify shared struct
fields, we apply rw permissions to 406 fields in nullblk and 156 in
nullnet; remaining fields are marked ro.

Dummy Network Driver (nullnet). We evaluate nullnet us-
ing iperf3 [32] with 1-4 threads, reporting TCP transmit band-
width and maximum RSS averaged over 10 runs (Figure 6). BAsTAG
achieves 94.3% of native throughput (2478 Mbps for a single thread),
outperforming IRM-based (77.1%) and message-based (85.3%). The
latter incurs increasing overhead with more threads (20.7% degra-
dation with 4 threads) due to increased marshalling costs when
managing more threads. BASTAG’s memory overhead ranges from
10.4-11.8%2, which is reduced to 4.3-7.9% with optimizations.
Multi-Queue Block Device Driver. We evaluate nullblk using
fio [39] with a 512-byte block size. BASTAG achieves 96.8% of na-
tive performance (55.3 kops for a single thread), outperforming the
IRM-based (47.9 kops, 83.9%) and message-based (43.4 kops, 76%)
mechanisms, as shown in Figure 7. While BAstaG and IRM-based
approaches maintain stable overheads across thread counts, the
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Figure 7: Throughput and memory utilization of nullblk.

vehicle sensor-gyro adc-report esc-status

IRM 1.2 1.18 1.22 1.24
BasTac 1.07 1.05 1.09 1.07

Table 5: Normalized latency to read uORB messages.
message-based scheme degrades significantly due to increased do-
main crossings to perform the I/O as shared objects need to be
marshaled and synchronized in the occurrence of domain crossing.
Memory overheads are negligible across all mechanisms, as the
benchmark saturates available physical memory.

7.3 Case Study 2: Inter-task Communication

In the second case study, we consider memory sharing scenario
where multiple tasks in PX4 [63] middleware that communicate
through messages via uORB [65] protocol. We investigate four type
of messages from PX4 uORB publication/subscription graph [64]
that are accessed by multiple tasks where each task uses different
set of subfields of the message struct. We compare BASTAG’s per-
formance with IRM-based mechanism, in terms of latency to read
10,000 messages, when the access control is enforced at a byte-level.
We omit the comparison with message-based mechanism as uORB
already copies the message (without access control over its sub-
fields) via publication and subscription intrinsics. Table 5 shows
the normalized performance. BASTAG demonstrates 7.1% overheads
on average across four message types, outperforming IRM-based
(21.1% overheads on average).

7.4 Case Study 3: Multi-threaded Application

To understand end-to-end overheads of BASTAG on multi-threaded
applications, we conduct evaluations using Memcached v1.6.28.
We enforce access control on thread-specific metadata and globals,
similar to shared objects such as CQ_ITEM discussed in Section 3.
We use the memaslap [14] load generator to send random TCP
requests to the server (10% set and 90% get) running with two ser-
vice threads while varying the number of concurrent connections.
Figure 8-(a) shows the throughput in operations per second (ops).
BASTAG incurs 5.75% overheads on average with peak throughput
of 123kops compared to the native performance, outperforming
IRM-based mechansism that shows 16.98% overheads on average.
The memory overhead comes from managing the tag regions for
dispatch queues where CQ_ITEM is pushed from the main thread
and popped from the worker thread, showing 15.3%% on average as
the maximum size of the queue is determined. Figure 8-(b) shows
the memory overheads after the optimizations with respect to the
overheads without them. While the effect of optimizations is depen-
dent on the workload characteristics, general trend shows that the
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Figure 9: Performance overheads of BasTac integrated with
[85] on SPEC2017 with varying ratio of shared memory.

optimizations suppresses the memory overheads from increasing
linearly due to the additional tag regions for the new domains.

7.5 Integration with Isolation Technique

To evaluate BASTAG in conjunction with cooperative isolation on pri-
vate memory, we integrate it into the latest SFI framework [85] by
replacing private memory instrumentation with BAsTAG ’s shared
memory instrumentation (Section 6.4), and run it on SPEC2017rate.
We set the proportion of shared objects to 10%, granting rw per-
missions at allocation time. Byte-level access control is applied,
and results are averaged over ten runs (Figure 9). With 10% shared
objects, BAsTAG incurs 8.55% overhead on top of SFI (19.9%), out-
performing the IRM-based scheme, which incurs 20.27%. BAsTaG
shows 2.77x memory overhead at 10% due to the accumulation of
tag regions, which are not released on free due to lack of object
size tracking. This prevents optimization and causes tag regions to
persist, potentially increasing memory usage up to 32x. We expect
significantly lower overheads with proper untagging, as seen in
prior evaluations.

7.6 Comparison with SW-only Shadow Memory

To evaluate BASTAG’s performance advantage from MTE-based in-
strumentation over software-only shadow memory mechanisms,
we compare it against AddressSanitizer [70] on SPEC2006. For a
fair comparison, we (1) disable logging and syscall interception,
(2) remove stack protection from ASan LLVM IR pass, and (3) set
quarantine_size_mb=0 to disable heap quarantine for use-after-
free detection, retaining only sanitizer checks [91]. ASan redzones
are configured to 32 bytes and updated on malloc and free. We

2Memory overhead includes the cost of memory tags. On Pixel 8, the physical memory
used for MTE tags is reserved by the bootloader [3] and is not reflected in maximum
RSS. To account for this, we report the memory tag overhead used in the tag regions
separately and add it to the measured RSS for each benchmark.
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Figure 10: Overheads of ASan and Bastac on SPEC2006.

preserve ASan’s memory access checks and instrument the same
LLVM IR locations for BAsTAG. Analogous to ASan’s redzone up-
dates, BASTAG tags memory on allocation and clears tags on deallo-
cation. The results are shown in Figure 10. As shown in Figure 10,
BASTAG incurs 57% overhead on average, compared to 106% for
ASan. This comparison highlights the performance benefit of MTE-
based instrumentation for access control, though it is not a direct
feature-for-feature comparison: ASan provides broader memory
safety coverage, while BASTAG is tailored for supporting multi-
domain access control on shared memory.

7.7 Security Analysis

An adversary interested in compromising the access control pro-
vided by BASTAG may attempt to manipulate either the pointer
tags or memory tags. However, BASTAG ’s instrumentation of com-
pelling memory accesses to be conducted through reserved regis-
ters (Section 5.3) prevents any arbitrary pointer tag manipulations
from circumventing BASTAG. An adversary may also try to directly
change the memory tags of the tag regions. Such attack vector
is not applicable to BASTAG since the memory tags can only be
altered by specific MTE instruction (i.e., STG) which is prevented
from being emitted during the compile time and is verified by the
verifier (Section 6.2). An adversary interested in compromising the
access control provided by BASTAG may also attempt to conduct the
attack by leveraging software vulnerabilities such as control flow
hijacking or buffer overflows. However, an adversary does not have
the capability to neither control the target address of the memory
access nor leverage private accesses as BASTAG binds the memory
accesses to reserved registers with preset tags (Section 5.3).

8 Related Works

Shadow Memory. BASTAG relates to tools like AddressSanitizer
(ASan)[70], Valgrind[58], and their optimized variants [16, 44],
which use shadow memory to enforce memory safety. Unlike these,
BAsSTAG uses shadow memory only to associate tags with memory
via lightweight indirection. Prior approaches load metadata from
shadow memory for policy enforcement, whereas BASTAG attaches
shadow tags and triggers hardware-based MTE tag comparisons
through dummy stores, eliminating costly loads (Section 5.3).
Techniques for Spatial Safety. Mechanisms like SoftBound [53],
Baggy Bounds [1], and BOGO [90] enforce spatial safety using fat
pointers or Intel MPX. However, they lack support for multi-domain
policies like rw, ro, and na, which are essential for fine-grained
shared memory control across domains, as provided by BasTac.
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Tagged Architectures. Tagged architectures [29, 72, 77, 80-82,
89] offer hardware-enforced isolation. Examples include Loki [89],
HDFI [72], CODOMs [77], TIMBER-V [81], and CHERI [80]. Most
remain prototypes or target private memory isolation. In contrast,
BASTAG targets fine-grained, multi-policy access control over shared
memory on commodity ARM hardware.

Applications of ARM MTE. Several works apply ARM MTE to
enhance memory safety. HAKC [51] combines MTE and Pointer
Authentication for kernel compartmentalization, and SFITAG [68]
isolates kernel extensions. Capacity [30] and PeTAL [40] enforce
intra-process isolation using MTE. Unlike these, BASTAG extends
MTE beyond its native granularity to support byte-level, policy-rich
access control between domains.

9 Conclusion

BASTAG is an efficient, byte-level access control system for shared
memory that addresses the limitations of previous approaches by
leveraging MTE. While a direct usage of MTE for access control
faces limitations such as insufficient granularity and limited types
of access permission, BASTAG introduces a concept of shadow mem-
ory tagging. By placing MTE tags associated with shared memory in
separate tag regions, BASTAG achieves byte-level access control and
supports multiple access permissions across domains. Evaluation
results on realistic use cases demonstrate the versatility and practi-
cality of BASTAG, outperforming existing mechanisms in terms of
overhead. BASTAG presents a promising solution for efficient access
control in shared memory scenarios.
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