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= User data is exposed to adversarial insiders in cloud
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= Hardware-based security supports
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= DRAM traffic is encrypted

* Need collaborator to control when and what to inject

= Temporal (when) precision is limited
» Single instruction (single stepping)
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= Observation 1

* |[f Merkle root is secure, modifying/
replaying internal nodes will be
detected during root computation
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» Use short-lived VMs as
secure storage for MT root

* Different Auth-VM to store MT
root on every root update

* Different encryption keys

* PUT

 Calculate root,,e,
 Store root,,,, in new Auth VM

= GET - verify MT root
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Different encryption keys
=» root decrypted to different value
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=» root decrypted to different value
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= Additional Protections
* (Issue 1) Integrity of new key-value pair(s)
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= Additional Protections

* (Issue 1) Integrity of new key-value pair(s)
=>» Solution: verify before/after writing to database
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= Additional Protections

* (Issue 1) Integrity of new key-value pair(s)
=>» Solution: verify before/after writing to database

* (Issue 2) Protecting new Merkle root
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= Additional Protections

* (Issue 1) Integrity of new key-value pair(s)
=>» Solution: verify before/after writing to database

* (Issue 2) Protecting new Merkle root
=>» Solution: obscuring physical location of calculated Merkle root

* (Issue 3) Protecting Merkle root calculation
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= Additional Protections

* (Issue 1) Integrity of new key-value pair(s)
=>» Solution: verify before/after writing to database

* (Issue 2) Protecting new Merkle root
=>» Solution: obscuring physical location of calculated Merkle root

* (Issue 3) Protecting Merkle root calculation
=>» Solution: reserved register to hold intermediate nodes
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) Additional Protection & Optlmlzatloﬁs

= Additional Protections

* (Issue 1) Integrity of new key-value pair(s)
=>» Solution: verify before/after writing to database

* (Issue 2) Protecting new Merkle root
=>» Solution: obscuring physical location of calculated Merkle root

* (Issue 3) Protecting Merkle root calculation
=>» Solution: reserved register to hold intermediate nodes

= Optimizations
- Eager Auth-VM creation
* VM debloating
« Asynchronous verification
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) Additional Protection & Optlmlzatloﬁs

= Additional Protections

* (Issue 1) Integrity of new key-value pair(s)
=>» Solution: verify before/after writing to database

* (Issue 2) Protecting new Merkle root
=>» Solution: obscuring physical location of calculated Merkle root

* (Issue 3) Protecting Merkle root calculation
=>» Solution: reserved register to hold intermediate nodes

= Optimizations
- Eager Auth-VM creation :
- VM debloating Please refer to the paper for details

« Asynchronous verification
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) Standalone Evaluation

= KVSEV performs

 (Baseline) 13.38x — 64.23x slower than native KVS
« Similar numbers across varying number of threads, value size, KVS size
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) Impact of Optimizations

= KVSEV improves performance by
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= KVSEV performs better than ShieldStore by

* 1.47x when accommodating large number of key-value pairs
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= KVSEV performs better than ShieldStore by

* 1.47x when accommodating large number of key-value pairs
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= KVSEV performs better than ShieldStore by

* 1.47x when accommodating large number of key-value pairs
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) Summary

= KVSEV is a secure in-memory KVS with AMD SEV

= KVSEV protects KVS from physical adversaries by using
ephemeral VMs as safe storage for SW-only Merkle tree roots
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