
KVSEV:
A Secure In-Memory Key-Value Store
with Secure Encrypted Virtualization
Junseung You, Kyeongryong Lee, Hyungon Moon,
Yeongpil Cho, Yunheung Paek

Santa Cruz, USA
October 31-November 1, 2023

Trusted Key-Value Stores

§User data is exposed to adversarial insiders in cloud

1

Trusted Key-Value Stores

§User data is exposed to adversarial insiders in cloud

2

adversarial insiders
(tenants, administrator)

Trusted Key-Value Stores

§User data is exposed to adversarial insiders in cloud
§Hardware-based security supports

3

adversarial insiders
(tenants, administrator)

Trusted Key-Value Stores

§User data is exposed to adversarial insiders in cloud
§Hardware-based security supports

• Provide trusted execution environment in remote server(s)

4

adversarial insiders
(tenants, administrator)

Trusted Key-Value Stores

§User data is exposed to adversarial insiders in cloud
§Hardware-based security supports

• Provide trusted execution environment in remote server(s)

5

adversarial insiders
(tenants, administrator)

Intel SGX
AMD SEV

Trusted Key-Value Stores with SEV

Secure Processor (SP) manages
per-VM encryption keys

6

guest OS

hypervisor

VM 1 VM 2

Memory Controller & SP

DRAM

Key 1 Key 2

ENC/DEC

Trusted Key-Value Stores with SEV

Secure Processor (SP) manages
per-VM encryption keys

Provides confidentiality and
integrity from malicious VMs and
hypervisor

7

guest OS

hypervisor

VM 1 VM 2

Memory Controller & SP

DRAM

Key 1 Key 2

ENC/DEC

Trusted Key-Value Stores with SEV

Secure Processor (SP) manages
per-VM encryption keys

Provides confidentiality and
integrity from malicious VMs and
hypervisor

8

guest OS

hypervisor

VM 1 VM 2

Memory Controller & SP

DRAM

Key 1 Key 2

ENC/DEC
No integrity protection from

physical adversaries

Physical Attacks on Key-Value Stores

§DRAM traffic is encrypted

9

k v

guest OS

hypervisor

DRAM

Physical Attacks on Key-Value Stores

§DRAM traffic is encrypted
• Need collaborator to control when and what to inject

10

k v

guest OS

hypervisor

DRAM

Physical Attacks on Key-Value Stores

§DRAM traffic is encrypted
• Need collaborator to control when and what to inject

§ Temporal (when) precision is limited
• Single instruction (single stepping)
• Multiple instructions

11

k v

guest OS

hypervisor

DRAM

Physical Attacks on Key-Value Stores

§DRAM traffic is encrypted
• Need collaborator to control when and what to inject

§ Temporal (when) precision is limited
• Single instruction (single stepping)
• Multiple instructions

§ Low temporal precision è targets k-v pairs
• Arbitrary corruption

12

k v

guest OS

hypervisor

DRAM

Physical Attacks on Key-Value Stores

§DRAM traffic is encrypted
• Need collaborator to control when and what to inject

§ Temporal (when) precision is limited
• Single instruction (single stepping)
• Multiple instructions

§ Low temporal precision è targets k-v pairs
• Arbitrary corruption

13

k v’

guest OS

hypervisor

DRAM

Physical Attacks on Key-Value Stores

§DRAM traffic is encrypted
• Need collaborator to control when and what to inject

§ Temporal (when) precision is limited
• Single instruction (single stepping)
• Multiple instructions

§ Low temporal precision è targets k-v pairs
• Arbitrary corruption
• Rollback

14

k v

guest OS

hypervisor

DRAM

Physical Attacks on Key-Value Stores

§DRAM traffic is encrypted
• Need collaborator to control when and what to inject

§ Temporal (when) precision is limited
• Single instruction (single stepping)
• Multiple instructions

§ Low temporal precision è targets k-v pairs
• Arbitrary corruption
• Rollback

15

k v’

guest OS

hypervisor

DRAM

Physical Attacks on Key-Value Stores

§DRAM traffic is encrypted
• Need collaborator to control when and what to inject

§ Temporal (when) precision is limited
• Single instruction (single stepping)
• Multiple instructions

§ Low temporal precision è targets k-v pairs
• Arbitrary corruption
• Rollback

16

k v

guest OS

hypervisor

DRAM

Strawman Solution

§Merkle tree (MT)
• SW-only data structure for data

integrity

17

k v

hypervisor

DRAM

Merkle
tree

Strawman Solution

§Merkle tree (MT)
• SW-only data structure for data

integrity

18

k v

hypervisor

DRAM

Merkle
tree

k-v k-v k-v k-v

ℎ! ℎ" ℎ# ℎ$

ℎ!" ℎ#$

ℎ!"#$

Strawman Solution

§Merkle tree (MT)
• SW-only data structure for data

integrity
• Update on PUT, verify on GET

19

k v

hypervisor

DRAM

Merkle
tree

k-v k-v k-v k-v

ℎ! ℎ" ℎ# ℎ$

ℎ!" ℎ#$

ℎ!"#$

GET(k,v)

Strawman Solution

§Merkle tree (MT)
• SW-only data structure for data

integrity
• Update on PUT, verify on GET

§Problem
• Replay MT with k-v pair

20

k v

hypervisor

DRAM

Merkle
tree

Strawman Solution

§Merkle tree (MT)
• SW-only data structure for data

integrity
• Update on PUT, verify on GET

§Problem
• Replay MT with k-v pair

21

k v

hypervisor

DRAM

𝑀𝑇"

PUT(k,v)

𝑀𝑇"

Operation Time

𝑡!

v

Strawman Solution

§Merkle tree (MT)
• SW-only data structure for data

integrity
• Update on PUT, verify on GET

§Problem
• Replay MT with k-v pair

22

k v’

hypervisor

DRAM

𝑀𝑇#

PUT(k,v)

𝑀𝑇"

Operation Time

𝑡!

PUT(k,v’) 𝑡"

v

Strawman Solution

§Merkle tree (MT)
• SW-only data structure for data

integrity
• Update on PUT, verify on GET

§Problem
• Replay MT with k-v pair

23

k v’

hypervisor

DRAM

𝑀𝑇#

PUT(k,v)

𝑀𝑇"

Operation Time

𝑡!

PUT(k,v’) 𝑡"

GET(k) 𝑡#
v

Strawman Solution

§Merkle tree (MT)
• SW-only data structure for data

integrity
• Update on PUT, verify on GET

§Problem
• Replay MT with k-v pair

24

k v’

hypervisor

DRAM

𝑀𝑇#

PUT(k,v)

𝑀𝑇"

Operation Time

𝑡!

PUT(k,v’) 𝑡"

GET(k) 𝑡#
v replay!

Strawman Solution

§Merkle tree (MT)
• SW-only data structure for data

integrity
• Update on PUT, verify on GET

§Problem
• Replay MT with k-v pair

25

k v

hypervisor

DRAM

𝑀𝑇"

PUT(k,v)

𝑀𝑇"

Operation Time

𝑡!

PUT(k,v’) 𝑡"

GET(k) 𝑡#
v replay!

Strawman Solution

§Merkle tree (MT)
• SW-only data structure for data

integrity
• Update on PUT, verify on GET

§Problem
• Replay MT with k-v pair

26

k v

hypervisor

DRAM

𝑀𝑇"

PUT(k,v)

𝑀𝑇"

Operation Time

𝑡!

PUT(k,v’) 𝑡"

GET(k) 𝑡#
v replay!

Returns outdated value ‘v’ passing
Merkle tree verification

Our Observations

§Observation 1
• If Merkle root is secure, modifying/

replaying internal nodes will be
detected during root computation

27

k v

hypervisor

DRAM

Merkle
tree

k-v k-v k-v k-v

ℎ! ℎ" ℎ# ℎ$

ℎ!" ℎ#$

ℎ!"#$

Our Observations

§Observation 1
• If Merkle root is secure, modifying/

replaying internal nodes will be
detected during root computation

28

k v

hypervisor

DRAM

Merkle
tree

k-v’ k-v k-v k-v

ℎ′! ℎ" ℎ# ℎ$

ℎ′!" ℎ#$

ℎ!"#$

: outdated data

Our Observations

§Observation 1
• If Merkle root is secure, modifying/

replaying internal nodes will be
detected during root computation

29

k v

hypervisor

DRAM

Merkle
tree

k-v’ k-v k-v k-v

ℎ′! ℎ" ℎ# ℎ$

ℎ′!" ℎ#$

ℎ!"#$

Secure / unmodifiable

: outdated data

Our Observations

§Observation 1
• If Merkle root is secure, modifying/

replaying internal nodes will be
detected during root computation

30

k v

hypervisor

DRAM

Merkle
tree

k-v’ k-v k-v k-v

ℎ′! ℎ" ℎ# ℎ$

ℎ′!" ℎ#$

ℎ!"#$

Secure / unmodifiable

: outdated data

Our Observations

§Observation 1
• If Merkle root is secure, modifying/

replaying internal nodes will be
detected during root computation

31

k v

hypervisor

DRAM

Merkle
tree

k-v’ k-v k-v k-v

ℎ′! ℎ" ℎ# ℎ$

ℎ′!" ℎ#$

ℎ!"#$

Secure / unmodifiable

: outdated data

Mismatch!

Our Observations

§Observation 1
• If Merkle root is secure, modifying/

replaying internal nodes will be
detected during root computation

§Observation 2
• Different encryption keys are used

for respective VMs

32

k v

hypervisor

DRAM

Merkle
tree

k-v k-v k-v k-v

ℎ! ℎ" ℎ# ℎ$

ℎ!" ℎ#$

ℎ!"#$

Our Observations

§Observation 1
• If Merkle root is secure, modifying/

replaying internal nodes will be
detected during root computation

§Observation 2
• Different encryption keys are used

for respective VMs

33

k v

hypervisor

DRAM

Merkle
tree

k-v k-v k-v k-v

ℎ! ℎ" ℎ# ℎ$

ℎ!" ℎ#$

ℎ!"#$

𝑘𝑒𝑦!"# 𝑘𝑒𝑦!"$ Secure Processor

Our Observations

§Observation 1
• If Merkle root is secure, modifying/

replaying internal nodes will be
detected during root computation

§Observation 2
• Different encryption keys are used

for respective VMs
• Secure channel btw. VMs and SP

34

k v

hypervisor

DRAM

Merkle
tree

k-v k-v k-v k-v

ℎ! ℎ" ℎ# ℎ$

ℎ!" ℎ#$

ℎ!"#$

𝑘𝑒𝑦!"# 𝑘𝑒𝑦!"$ Secure Processor

Our Observations

§Observation 1
• If Merkle root is secure, modifying/

replaying internal nodes will be
detected during root computation

§Observation 2
• Different encryption keys are used

for respective VMs
• Secure channel btw. VMs and SP

35

k v

hypervisor

DRAM

Merkle
tree

k-v k-v k-v k-v

ℎ! ℎ" ℎ# ℎ$

ℎ!" ℎ#$

ℎ!"#$

𝑘𝑒𝑦!"# 𝑘𝑒𝑦!"$ Secure Processor

Idea: Use different VM encryption keys
to secure Merkle root

Our Solution - KVSEV

§Use short-lived VMs as
secure storage for MT root

36

k v

hypervisor

DRAM

AMD SP

root

Our Solution - KVSEV

§Use short-lived VMs as
secure storage for MT root

37

k v

hypervisor

DRAM

AMD SP

root 𝑟𝑜𝑜𝑡" 𝐴𝑢𝑡ℎ 𝑉𝑀"

𝑟𝑜𝑜𝑡# 𝐴𝑢𝑡ℎ 𝑉𝑀#

𝑟𝑜𝑜𝑡% 𝐴𝑢𝑡ℎ 𝑉𝑀%

…

Our Solution - KVSEV

§Use short-lived VMs as
secure storage for MT root

• Different Auth-VM to store MT
root on every root update

• Different encryption keys

38

k v

hypervisor

DRAM

AMD SP

root 𝑟𝑜𝑜𝑡" 𝐴𝑢𝑡ℎ 𝑉𝑀"

𝑟𝑜𝑜𝑡# 𝐴𝑢𝑡ℎ 𝑉𝑀#

𝑟𝑜𝑜𝑡% 𝐴𝑢𝑡ℎ 𝑉𝑀%

…

Our Solution - KVSEV

§Use short-lived VMs as
secure storage for MT root

• Different Auth-VM to store MT
root on every root update

• Different encryption keys

§PUT
• Calculate 𝑟𝑜𝑜𝑡&'(
• Store 𝑟𝑜𝑜𝑡&'(in new Auth VM

39

k v

hypervisor

DRAM

AMD SP

root 𝑟𝑜𝑜𝑡" 𝐴𝑢𝑡ℎ 𝑉𝑀"

PUT(k, v’)
1

Our Solution - KVSEV

§Use short-lived VMs as
secure storage for MT root

• Different Auth-VM to store MT
root on every root update

• Different encryption keys

§PUT
• Calculate 𝑟𝑜𝑜𝑡&'(
• Store 𝑟𝑜𝑜𝑡&'(in new Auth VM

40

k v

hypervisor

DRAM

AMD SP

root 𝑟𝑜𝑜𝑡" 𝐴𝑢𝑡ℎ 𝑉𝑀"

PUT(k, v’)
1

𝐴𝑢𝑡ℎ 𝑉𝑀#

2

Our Solution - KVSEV

§Use short-lived VMs as
secure storage for MT root

• Different Auth-VM to store MT
root on every root update

• Different encryption keys

§PUT
• Calculate 𝑟𝑜𝑜𝑡&'(
• Store 𝑟𝑜𝑜𝑡&'(in new Auth VM

41

k v

hypervisor

DRAM

AMD SP

root 𝑟𝑜𝑜𝑡" 𝐴𝑢𝑡ℎ 𝑉𝑀"

PUT(k, v’)
1

𝐴𝑢𝑡ℎ 𝑉𝑀#

2

3

Our Solution - KVSEV

§Use short-lived VMs as
secure storage for MT root

• Different Auth-VM to store MT
root on every root update

• Different encryption keys

§PUT
• Calculate 𝑟𝑜𝑜𝑡&'(
• Store 𝑟𝑜𝑜𝑡&'(in new Auth VM

42

k v

hypervisor

DRAM

AMD SP

root 𝑟𝑜𝑜𝑡" 𝐴𝑢𝑡ℎ 𝑉𝑀"

PUT(k, v’)
1

𝐴𝑢𝑡ℎ 𝑉𝑀#

2

3

𝑟𝑜𝑜𝑡#
4

Our Solution - KVSEV

§Use short-lived VMs as
secure storage for MT root

• Different Auth-VM to store MT
root on every root update

• Different encryption keys

§PUT
• Calculate 𝑟𝑜𝑜𝑡&'(
• Store 𝑟𝑜𝑜𝑡&'(in new Auth VM

§GET – verify MT root

43

k v

hypervisor

DRAM

AMD SP

root 𝑟𝑜𝑜𝑡" 𝐴𝑢𝑡ℎ 𝑉𝑀"

GET(k)
1

𝐴𝑢𝑡ℎ 𝑉𝑀#𝑟𝑜𝑜𝑡#

Our Solution - KVSEV

§Use short-lived VMs as
secure storage for MT root

• Different Auth-VM to store MT
root on every root update

• Different encryption keys

§PUT
• Calculate 𝑟𝑜𝑜𝑡&'(
• Store 𝑟𝑜𝑜𝑡&'(in new Auth VM

§GET – verify MT root

44

k v

hypervisor

DRAM

AMD SP

root 𝑟𝑜𝑜𝑡" 𝐴𝑢𝑡ℎ 𝑉𝑀"

GET(k)
1

𝐴𝑢𝑡ℎ 𝑉𝑀#𝑟𝑜𝑜𝑡#
2

Our Solution - KVSEV

45

k v

hypervisor

DRAM

AMD SP

𝑟𝑜𝑜𝑡" 𝑟𝑜𝑜𝑡" 𝐴𝑢𝑡ℎ 𝑉𝑀"

𝑟𝑜𝑜𝑡"1

Our Solution - KVSEV

46

k v’

hypervisor

DRAM

AMD SP

𝑟𝑜𝑜𝑡" 𝑟𝑜𝑜𝑡" 𝐴𝑢𝑡ℎ 𝑉𝑀"

𝑟𝑜𝑜𝑡"

PUT(k, v’)
2

1

Our Solution - KVSEV

47

k v’

hypervisor

DRAM

AMD SP

𝑟𝑜𝑜𝑡# 𝑟𝑜𝑜𝑡" 𝐴𝑢𝑡ℎ 𝑉𝑀"

𝑟𝑜𝑜𝑡"

𝑟𝑜𝑜𝑡# 𝐴𝑢𝑡ℎ 𝑉𝑀#

PUT(k, v’)
2

1

3

Our Solution - KVSEV

48

k v

DRAM

𝒓𝒐𝒐𝒕𝟎 𝑟𝑜𝑜𝑡" 𝐴𝑢𝑡ℎ 𝑉𝑀"

𝑟𝑜𝑜𝑡"

𝑟𝑜𝑜𝑡# 𝐴𝑢𝑡ℎ 𝑉𝑀#

PUT(k, v’)
2

1

3

𝑟𝑜𝑜𝑡"
hypervisor

4
Replace!

AMD SP

Our Solution - KVSEV

49

k v

DRAM

𝒓𝒐𝒐𝒕𝟎 𝑟𝑜𝑜𝑡" 𝐴𝑢𝑡ℎ 𝑉𝑀"

𝑟𝑜𝑜𝑡"

𝑟𝑜𝑜𝑡# 𝐴𝑢𝑡ℎ 𝑉𝑀#

PUT(k, v’)
2

1

𝑟𝑜𝑜𝑡"
hypervisor

4
Replace!

AMD SP
Different encryption keys
è root decrypted to different value

5

3

Our Solution - KVSEV

50

k v

DRAM

𝒓𝒐𝒐𝒕𝟎 𝑟𝑜𝑜𝑡" 𝐴𝑢𝑡ℎ 𝑉𝑀"

𝑟𝑜𝑜𝑡"

𝑟𝑜𝑜𝑡# 𝐴𝑢𝑡ℎ 𝑉𝑀#

PUT(k, v’)
2

1

𝑟𝑜𝑜𝑡"
hypervisor

4
Replace!

Different encryption keys
è root decrypted to different value

5
AMD SP

3

6
Mismatch!

Additional Protection & Optimizations

§Additional Protections
• (Issue 1) Integrity of new key-value pair(s)

51

Additional Protection & Optimizations

§Additional Protections
• (Issue 1) Integrity of new key-value pair(s)
è Solution: verify before/after writing to database

52

Additional Protection & Optimizations

§Additional Protections
• (Issue 1) Integrity of new key-value pair(s)
è Solution: verify before/after writing to database

• (Issue 2) Protecting new Merkle root

53

Additional Protection & Optimizations

§Additional Protections
• (Issue 1) Integrity of new key-value pair(s)
è Solution: verify before/after writing to database

• (Issue 2) Protecting new Merkle root
è Solution: obscuring physical location of calculated Merkle root

54

Additional Protection & Optimizations

§Additional Protections
• (Issue 1) Integrity of new key-value pair(s)
è Solution: verify before/after writing to database

• (Issue 2) Protecting new Merkle root
è Solution: obscuring physical location of calculated Merkle root

• (Issue 3) Protecting Merkle root calculation

55

Additional Protection & Optimizations

§Additional Protections
• (Issue 1) Integrity of new key-value pair(s)
è Solution: verify before/after writing to database

• (Issue 2) Protecting new Merkle root
è Solution: obscuring physical location of calculated Merkle root

• (Issue 3) Protecting Merkle root calculation
è Solution: reserved register to hold intermediate nodes

56

Additional Protection & Optimizations

§Additional Protections
• (Issue 1) Integrity of new key-value pair(s)
è Solution: verify before/after writing to database

• (Issue 2) Protecting new Merkle root
è Solution: obscuring physical location of calculated Merkle root

• (Issue 3) Protecting Merkle root calculation
è Solution: reserved register to hold intermediate nodes

§Optimizations
• Eager Auth-VM creation
• VM debloating
• Asynchronous verification

57

Additional Protection & Optimizations

§Additional Protections
• (Issue 1) Integrity of new key-value pair(s)
è Solution: verify before/after writing to database

• (Issue 2) Protecting new Merkle root
è Solution: obscuring physical location of calculated Merkle root

• (Issue 3) Protecting Merkle root calculation
è Solution: reserved register to hold intermediate nodes

§Optimizations
• Eager Auth-VM creation
• VM debloating
• Asynchronous verification

58

Please refer to the paper for details

Standalone Evaluation

§KVSEV performs
• (Baseline) 13.38x – 64.23x slower than native KVS
• Similar numbers across varying number of threads, value size, KVS size

59

Standalone Evaluation

§KVSEV performs
• (Baseline) 13.38x – 64.23x slower than native KVS
• Similar numbers across varying number of threads, value size, KVS size

60

More writes incurs
more frequent Auth VM renewals

Impact of Optimizations

§KVSEV improves performance by
• 2.3x with eager VM creation
• 5.7x with asynchronous verification
• 14x with Auth VM debloating (151.1 VMs/s è 2156.3 VMs/s)

61

Comparison to SGX-based Secure KVS

§KVSEV performs better than ShieldStore by
• 1.47x when accommodating large number of key-value pairs

62

Comparison to SGX-based Secure KVS

§KVSEV performs better than ShieldStore by
• 1.47x when accommodating large number of key-value pairs

63

Less writes boosts
KVSEV performance

Comparison to SGX-based Secure KVS

§KVSEV performs better than ShieldStore by
• 1.47x when accommodating large number of key-value pairs

64

Less writes boosts
KVSEV performance

Comparison to SGX-based Secure KVS

§KVSEV performs better than ShieldStore by
• 1.47x when accommodating large number of key-value pairs

65

Overhead of ShieldStore
increases w/ more # of entries

Less writes boosts
KVSEV performance

Summary

§KVSEV is a secure in-memory KVS with AMD SEV

§KVSEV protects KVS from physical adversaries by using
ephemeral VMs as safe storage for SW-only Merkle tree roots

66

KVSEV:
A Secure In-Memory Key-Value Store
with Secure Encrypted Virtualization
Junseung You, Kyeongryong Lee, Hyungon Moon,
Yeongpil Cho, Yunheung Paek

Santa Cruz, USA
October 31-November 1, 2023

