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Impact of Optimizations

§KVSEV improves performance by
• 2.3x with eager VM creation
• 5.7x with asynchronous verification
• 14x with Auth VM debloating (151.1 VMs/s è 2156.3 VMs/s)
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Comparison to SGX-based Secure KVS
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Summary

§KVSEV is a secure in-memory KVS with AMD SEV

§KVSEV protects KVS from physical adversaries by using 
ephemeral VMs as safe storage for SW-only Merkle tree roots
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