KVSEYV:
A Secure In-Memory Key-Value Store
with Secure Encrypted Virtualization

Junseunqg You, Kyeongryong Lee, Hyungon Moon,
Yeongpil Cho, Yunheung Paek

Santa Cruz, USA
October 31-November 1, 2023

socc D

) Trusted Key-Value Stores

= User data is exposed to adversarial insiders in cloud

y
£
(2}
S
o

S
YIERST
(| E5
o

) Trusted Key-Value Stores

= User data is exposed to adversarial insiders in cloud

adversarial insiders
(tenants, administrator)

soc D

QUEIND ¥
R | =)
A Y ¢ 3
\\’J“.‘-M Q)l l_l"rl\ls‘r j:_‘\ \ 1939 ._n
A .

L\
/‘ﬁéxkﬂ"\

) Trusted Key-Value Stores

= User data is exposed to adversarial insiders in cloud
= Hardware-based security supports

& redis
X X

O e adversarial insiders
s ... O (tenants, administrator)

) Trusted Key-Value Stores

= User data is exposed to adversarial insiders in cloud

= Hardware-based security supports
* Provide frusted execution environment in remote server(s)

adversarial insiders
(tenants, administrator)

) Trusted Key-Value Stores

= User data is exposed to adversarial insiders in cloud

= Hardware-based security supports
* Provide frusted execution environment in remote server(s)

Intel SGX

adversarial insiders
(tenants, administrator) AMD SEV

: socc D

QULEND : Ny
A . | \ “I
Y |@E| P2 LIMiS T RN

4
Ny & Al 113 \
el - AN

) Trusted Key-Value Stores with SEV

VM 1 VM 2
4 e) A Secure Processor (SP) manages
é = — per-VM encryption keys
(I | I
t OS
(_guestos J) | Y
(hypervisor |
e I
Memory Controller & SP
[Keyl | [Key2 |

S J
I ENC/DEC

[DRAM] | SOCCS)

) Trusted Key-Value Stores with SEV

VM 1 VM 2

4) N
(I o E—
(I o E—
Sy O
L \[guest OS]/ Y

g hypervisor

Memory Controller & SP
[Keyl] [Key2 |

~

J

I ENC/DEC
[DRAM]

Y |
\‘;4_ \\‘:"
Y

el

Secure Processor (SP) manages
per-VM encryption keys

Provides confidentiality and
integrity from malicious VMs and
hypervisor

: socc D

} Trusted Key-Value Stores with SEV

VM 1 VM 2
EHI:
= @
(. —
guest OS]

hypervisor

§
Memory Controller & SP

[[

Secure Processor (SP) manages
per-VM encryption keys

Provides confidentiality and
integrity from malicious VMs and
hypervisor

Key 1 Key 2]/
ENC/DEC

.
|

DRAM]

No integrity protection from
physical adversaries

8 socc D

-
S

N

k

Vv

[guest OS |

\J

/

hyperwsor

u—{

DRAM

* DRAM traffic is encrypted

",

EJ unisT R

) Physical Attacks on Key-Value Stores

soc D

‘Eié'j unisT R

) Physical Attacks on Key-Value Stores

[N\ = DRAM traffic is encrypted
é k v * Need collaborator to control when and what to inject
[guest OS
°)
hypervisor |

i—{

DRAM

o socc D

) Physical Attacks on Key-Value Stores

- 5
L A O\
Y A
" " 3 | (=2 2 9]
‘.IEEI., HNisT EANG
T D’

‘a)xLL\

-
S

k

Vv

N

[guest OS |

/

hyperwsor |

= DRAM traffic is encrypted

* Need collaborator to control when and what to inject

= Temporal (when) precision is limited
» Single instruction (single stepping)

K ‘ * Multiple instructions

DRAM

. socc D

/&
L
K

\3‘“ Q
<4 o 2\
L L\
. . WA g/
N, 7,
Y LJ Tl R N

QA)XLL\

) Physical Attacks on Key-Value Stores

% N\ = DRAM traffic is encrypted
S| k| v * Need collaborator to control when and what to inject
[guest OS
{ = Temporal (when) precision is limited
hypervisor - Single instruction (single stepping)

K =/ * Multiple instructions
‘ G Low temporal precision = targets k-v pairs
* Arbitrary corruption

DRAM
. socc D

/&
L
K

\3‘“ Q
<4 o 2\
L L\
. . WA g/
N, 7,
Y LJ Tl R N

QA)XLL\

) Physical Attacks on Key-Value Stores

% N\ = DRAM traffic is encrypted
S k| Vv * Need collaborator to control when and what to inject
[guest OS
{ = Temporal (when) precision is limited
hypervisor - Single instruction (single stepping)

K =/ * Multiple instructions
‘ G Low temporal precision = targets k-v pairs
* Arbitrary corruption

DRAM
. socc D

/&
L
K

\3‘“ Q
<4 o 2\
L L\
. . WA g/
N, 7,
Y LJ Tl R N

QA)XLL\

) Physical Attacks on Key-Value Stores

% N\ = DRAM traffic is encrypted
S| k| v * Need collaborator to control when and what to inject
[guest OS
{ = Temporal (when) precision is limited
hypervisor - Single instruction (single stepping)

K =/ * Multiple instructions
‘ G Low temporal precision = targets k-v pairs
* Arbitrary corruption

* Rollback
y soccf)

DRAM

/&
L
K

\3‘“ Q
<4 o 2\
L L\
. . WA g/
N, 7,
Y LJ Tl R N

QA)XLL\

) Physical Attacks on Key-Value Stores

% N\ = DRAM traffic is encrypted
S k| Vv * Need collaborator to control when and what to inject
[guest OS
{ = Temporal (when) precision is limited
hypervisor - Single instruction (single stepping)

K =/ * Multiple instructions
‘ G Low temporal precision = targets k-v pairs
* Arbitrary corruption

* Rollback
s soccf)

DRAM

/&
L
K

\3‘“ Q
<4 o 2\
L L\
. . WA g/
N, 7,
Y LJ Tl R N

QA)XLL\

) Physical Attacks on Key-Value Stores

% N\ = DRAM traffic is encrypted
S| k| v * Need collaborator to control when and what to inject
[guest OS
{ = Temporal (when) precision is limited
hypervisor - Single instruction (single stepping)

K =/ * Multiple instructions
‘ G Low temporal precision = targets k-v pairs
* Arbitrary corruption

* Rollback
’ soccf)

DRAM

) Strawman Solution
//é < | v N = Merkle tree (MT)
S « SW-only data structure for data
{ Merkle integrity
\ tree))
hypervisor |

\Z %
®3 o
|

DRAM |

; socc D

7
£
(el

=35
Kl

LLL«(
e
|E8\
Nl

&
A

) Strawman Solution

//3 < | v \\/ b |) s Merkle tree (MT)
il h., - SW-only data structure for data
{ Merkle integrity
\ tree J) he |lhy | hs | Ay
s hypervisor /Qv kv || k-v k-9

g3 o
|

DRAM |
socc D

18

) Strawman Solution

/
-(ékv

-

Merkle
tree

~

GET(k,v) {
N

))/
N
N
N
N
~\ AN

hypervisor

\J

o

®3
|

DRAM

|

7
7/
7
e
7
7
7
7

N
AN
N
J

h1234

et

\

k-v

k-v

U5

4
14
2
4
L

o
|@|i a\
E /':
R

R

&Y
f,
R
N (‘é

\ K

= Merkle tree (MT)

19

« SW-only data structure for data
integrity
« Update on PUT, verify on GET

soc D

) Strawman Solution

QUEIND ¥
R v [. Y <Ly
‘&;Mx UNisT NG

i olos e X . o4

L\
/"3))&4"\

i’

& k

)

Vv

Merkle
tree

\

,i

7/

hypervisor

\J

_/

= Merkle tree (MT)

« SW-only data structure for data
integrity
« Update on PUT, verify on GET

* Problem
* Replay MT with k-v pair

. socc D

QUEIND ¥

A " Y {— & o

‘&;M ST NG
i olos e A w4

L\
/"3))&4"\

) Strawman Solution

Operation Time

//é < | v]\ PUT(kv) to = Merkle tree (MT)
N « SW-only data structure for data
{ MT, integrity
\)) « Update on PUT, verify on GET
hypervisor
g —) * Problem
* Replay MT with k-v pair

, socc D

W72
V‘!-z)
)
YL
N

N

) Strawman Solution

Operation Time

(')
S « SW-only data structure for data
MT Nt Integrity
i 1)| PUTlYY) + Update on PUT, verify on GET
hypervisor
g —) * Problem
* Replay MT with k-v pair
0

" socc D

QUEIND ¥
R v [. Y <Ly
‘&;Mx UNisT NG

i olos e X . o4

L\
/"3))&4"\

) Strawman Solution

Operation Time

G 5 .
S|« [v HPuTky) o Merkle tree (MT)
S « SW-only data structure for data
MT Nt Integrity
i 1)| PUTlYY) + Update on PUT, verify on GET

hypervisor || GET(k) ts

g —) * Problem

* Replay MT with k-v pair

. socc D

W72 »
& p O\
é‘& | =)
M I 2
Wl s NG
eie A . o

QA)XLL\

) Strawman Solution

Operation Time

(')
% ol PUT(kv) o = Merkle tree (MT)
S ’ « SW-only data structure for data
MT Nt Integrity
i 1)| PUTlYY) + Update on PUT, verify on GET
hypervisor || GET(k) ts
g —) * Problem
[:} replay! * Replay MT with k-v pair

SIS a

| DRAM |

y socc D

L &S O\

M I A

‘J{,‘M DA LnisT IR
o N

‘a)xLL\

) Strawman Solution

Operation Time

[)
C‘ T ok PUT(KV) to = Merkle tree (MT)
S ’ « SW-only data structure for data
MT Nt Integrity
i 0)| PUTlkY) &1 + Update on PUT, verify on GET
hypervisor || GET(k) ts
g —) * Problem
[:} replay! * Replay MT with k-v pair

93 a

| DRAM |

. socc D

) Strawman Solution

Ty R

A4

WSS 4

e

W |

Pl =

7
A

ALl

Operation Time

e S .
& k| v kHPUT(kY) to Merkle tree (MT)
N « SW-only data structure for data
MT Nt Integrity
i 0)| PUTlkY) &1 + Update on PUT, verify on GET
: hypervisor GET(k) ts
\ —) * Problem
@ replay! * Replay MT with k-v pair
o
I Returns outdated value ‘v’ passing
| DRAM | Merkle tree verification

26

soc D

) Our Observations

R
(2wl
V%,
<Y

by 4
g
|E8\
W<

Y
4

%

& k

Vv

~

Merkle
X tree

hypervisor

/)/
N
N
N
N
N\ N|

7
7/
7
e
7
7
7
7

\J

N
AN
N
J

-

h1234

\

= Observation 1

* |[f Merkle root is secure, modifying/
replaying internal nodes will be
detected during root computation

. socc D

) Our Observations

R
(2wl
V%,
<Y

by 4
g
|E8\
W<

Y
4

%

& k

Vv

~

Merkle
X tree

hypervisor

/)/
N
N
N
N
N\ N|

7
7/
7
e
7
7
7
7

h1234

\

\J

N
AN
N
J

: outdated data

= Observation 1

* |[f Merkle root is secure, modifying/
replaying internal nodes will be
detected during root computation

" socc D

) Our Observations

r
7
SR
(i
2
g

¢
4

T
R
|E8\
W<

i’

& k

Vv

~

Merkle
X tree

))/
N
N
N
N
~\ AN

hypervisor

7
7/
7
e
7
7
7
7

Secure / unmodifiable

h1234-

—
Wi,

h'y || hy | hs

hy

A 4 A

\J

_/

o

®3
|

DRAM

|

Qv k-v || k-v

—

)

: outdated data

= Observation 1

* |[f Merkle root is secure, modifying/
replaying internal nodes will be
detected during root computation

" socc D

) Our Observations

%
S
(2l
%,
<Y

(_LL«(ff
|E8\
W<

¢
4

i’

& k

Vv

Merkle
tree

~

,i

hypervisor

))/
N
N
N
N
~\ AN

\J

_/

o

®3
|

DRAM

|

7
7/
7
e
7
7
7
7

Secure / unmodifiable

—

hi234 = Observation 1

V;' has * If Merkle root is secure, modifying/
A replaying internal nodes will be
A || ho | R | R detected during root computation

Qv k-v || k-v k-v/

: outdated data

. socc D

) Our Observations

& k| v

Merkle
tree

hypervisor

Secure / unmodifiable

4 ‘)/

= Observation 1

* |[f Merkle root is secure, modifying/
replaying internal nodes will be
h'l hy | hy || Ry detected during root computation

3
Y
/“ﬂ‘\ o~ N Y

\J

Qv k-v || k-v k-v/

: outdated data

®3
|

DRAM

, socc D

) Our Observations

R
(2wl
V%,
<Y

by 4
B
Ea
R

Y
4

%

& k

Vv

~

Merkle
X tree

hypervisor

/)/
N
N
N
N
N\ N|

7
7/
7
e
7
7
7
7

\J

N
AN
N
J

-

h1234

\

= Observation 1

* |[f Merkle root is secure, modifying/
replaying internal nodes will be
detected during root computation

= Observation 2

« Different encryption keys are used
for respective VMs

, socc D

) Our Observations

R
(2wl
%,
<Y

) 3

WSS
e . T
YIERST
KED
R

i’

& k

Vv

Merkle
tree

~

k

)\/
N
;N
N
N

hypervisor

7
7/
7
e
7
7
7
7

-

_/

[ke)’VM1] [kBJ’VMz]

D

O[]) Observation 1
hy, * If Merkle root is secure, modifying/
replaying internal nodes will be
hy || hy | hs | Ay detected during root computation

SN ke ke [e i
) - Observation 2

« Different encryption keys are used
Secure Processor for respective VMs

g2 +—la

| DRAM

|

N socc D

R
(2wl
V%,
<Y

WSS
e . T
YIERST
KED
/R

) Our Observations

//é k | v \\/ f1234 N - Observation 1
i e * |f Merkle root is secure, modifying/
Merkle replaying internal nodes will be
\ tree) hy ||l hy | Rs | Ry detected during root computation
hypervisor | Qv k-v || k-v k-9

= Observation 2

—

A

« Different encryption keys are used
[keyvm] [keyVMz] Secure Processor for respective VMs

J

IG « Secure channel btw. VMs and SP

DRAM |
. socc D

@&
e

DY

g

S
VA
(2wl
LBy,
oy

\,_LL«(3 4_7
2 @' 2 N\
S
&

&
A

) Our Observations

//é k | v \\/ f1234 N - Observation 1

i e * |f Merkle root is secure, modifying/

Merkle replaying internal nodes will be
\ tree) hy [hy | hs | ha detected during root computation
hypervisor | k-v || kv || k-v k-\Z . .
= —/ = —/ Obs_ervatlon 2 |
.) « Different encryption keys are used
\[keyvm] [ke.VVMz]) Secure Processor for respective VMs
o Saociira channal hia \/Nc and SP

Idea: Use different VM encryption keys
DRAM] to secure Merkle root
socc D

@&
[}
4IIIF

)

35

) Our Solution - KVSEV

)

& k| v

root

]\

()
)

"/

hypervisor |

2

36

» Use short-lived VMs as
secure storage for MT root

soc D

) Our Solution - KVSEV

//é | v N = Use short-lived VMs as
secure storage for MT root
{[root Pl-b[[rootg]]Auth VM,
, [[root,]]Auth VM,
\ hypervisor) .
\C %

root,]]Auth VM,

\

37 socc D

) Our Solution - KVSEV

>

& k| v

A\

l:I' E—
()

7/

{[root M root
L

hypervisor |

\J

)

y
£
(2}
S
o

S
YIERST
(| E5
o

» Use short-lived VMs as
—? secure storage for MT root
o J|Auth VM,

* Different Auth-VM to store MT
root on every root update
[_root; JJAuthVM,; - Different encryption keys

|[root, HAuthVMZ

\

soc D

38

) Our Solution - KVSEV

i’

& k

l:I' E—
()

"/

hypervisor |

{[root M root
L

)]fAuth VM,

\J

y
£
(2}
S
e

S
YERST
(| E5
o

y i/ PUT(k, V') . yUse short-lived VMs as

secure storage for MT root

* Different Auth-VM to store MT
root on every root update

* Different encryption keys

* PUT

 Calculate root,,e,
 Store root,,,, in new Auth VM

soc D

39

QUEIND ¥
R v [. Y <Ly
‘&;Mx UNisT NG

i olos e X . o4

L\
/"3))&4"\

) Our Solution - KVSEV

G - i/ PUT(k, v') . Use short-lived VMs as

secure storage for MT root

L[root M ""OOtO-ﬁluth VMo . Different Auth-VM to store MT
== =) @l root on every root update
* Different encryption keys

[|Auth VM,

* PUT

 Calculate root,,e,
 Store root,,,, in new Auth VM

o socc D

) Our Solution - KVSEV

i’

& k

 e— | S—

"/

y
£
(2}
S
e

S
YERST
(| E5
o

y i/ PUT(k, V') . yUse short-lived VMs as

secure storage for MT root

—— — — —— — — — —

(f' _________ I}
root J#=»_root, _|AuthVMy . Different Auth-VM to store MT

h@[_____ root on every root update
* Different encryption keys

{[
==

hypervisor |

\J

)

[|Auth VM,

* PUT

 Calculate root,,e,
 Store root,,,, in new Auth VM

soc D

41

y
£
(2}
S
o

S
YIERST
(| E5
/R

) Our Solution - KVSEV
G - i/@)PUT(kr V') = Use short-lived VMs as

secure storage for MT root

* Different Auth-VM to store MT
root on every root update

* Different encryption keys

* PUT

 Calculate root,,e,
 Store root,,,, in new Auth VM

soc D

y
£
(2}
S
o

S
YIERST
(| E5
o

) Our Solution - KVSEV

» Use short-lived VMs as
secure storage for MT root

* Different Auth-VM to store MT
root on every root update

* Different encryption keys

* PUT

 Calculate root,,e,
 Store root,,,, in new Auth VM

= GET - verify MT root
SOCCS)

y
£
(2}
S
o

S
YIERST
(| E5
/R

) Our Solution - KVSEV

» Use short-lived VMs as
secure storage for MT root

* Different Auth-VM to store MT
root on every root update

* Different encryption keys

* PUT

 Calculate root,,e,
 Store root,,,, in new Auth VM

= GET - verify MT root
SOCCS)

) Our Solution - KVSEV

()
%kv\

{[root, M rooty]IAuthVMO
L

 e— E—
() () ()

—/

hypervisor

\C _/

- oram | D root, P SOCCD

) Our Solution - KVSEV

- @ outic v

% — i/ PUT(k, v’)

{[root, M rootgmuth VM,
L

 e— E—
() () ()

—/

hypervisor

\C _/

- oram | D root, P SOCC:}

) Our Solution - KVSEV
//é o i/@)PUT(k,v')

{[root, 1P root, iiAuth VM,
K (—) (—) (—) I// l
: \ root; J|Auth VM,
\ hypervisor)
\C _/
4

- oram | D root, P SOCC:}

) Our Solution - KVSEV

soc D

Different encryption keys
=» root decrypted to different value

- socc D

Different encryption keys
=» root decrypted to different value

" socc D

= Additional Protections
* (Issue 1) Integrity of new key-value pair(s)

) socc D

230D
N ERD

LY
v M

A A\
v / = [Rl
V pem . o €KLy
Y @E P unisT IRINGY:
P LL“\ SRR cnn <

) Additional Protection & Optimizations

= Additional Protections

* (Issue 1) Integrity of new key-value pair(s)
=>» Solution: verify before/after writing to database

. socc D

QUED®
A l &y faa}
iy Mt Y-
‘3))(4‘ <=

) Additional Protection & Optimizations

= Additional Protections

* (Issue 1) Integrity of new key-value pair(s)
=>» Solution: verify before/after writing to database

* (Issue 2) Protecting new Merkle root

. socc D

= Additional Protections

* (Issue 1) Integrity of new key-value pair(s)
=>» Solution: verify before/after writing to database

* (Issue 2) Protecting new Merkle root
=>» Solution: obscuring physical location of calculated Merkle root

54

soc D

= Additional Protections

* (Issue 1) Integrity of new key-value pair(s)
=>» Solution: verify before/after writing to database

* (Issue 2) Protecting new Merkle root
=>» Solution: obscuring physical location of calculated Merkle root

* (Issue 3) Protecting Merkle root calculation

55

soc D

R
A [F297]
|. | unisT NG
‘A)XLL\ h

) Additional Protection & Optimizations

Y
\‘;
Y

= Additional Protections

* (Issue 1) Integrity of new key-value pair(s)
=>» Solution: verify before/after writing to database

* (Issue 2) Protecting new Merkle root
=>» Solution: obscuring physical location of calculated Merkle root

* (Issue 3) Protecting Merkle root calculation
=>» Solution: reserved register to hold intermediate nodes

. socc D

\
»v
V

/ el L"d

o €Ly
WrisT AN
7L Lo s zxF

) Additional Protection & Optlmlzatloﬁs

= Additional Protections

* (Issue 1) Integrity of new key-value pair(s)
=>» Solution: verify before/after writing to database

* (Issue 2) Protecting new Merkle root
=>» Solution: obscuring physical location of calculated Merkle root

* (Issue 3) Protecting Merkle root calculation
=>» Solution: reserved register to hold intermediate nodes

= Optimizations
- Eager Auth-VM creation
* VM debloating
« Asynchronous verification

. socc D

\
»v
V

/ el L"d

o €Ly
WrisT AN
7L Lo s zxF

) Additional Protection & Optlmlzatloﬁs

= Additional Protections

* (Issue 1) Integrity of new key-value pair(s)
=>» Solution: verify before/after writing to database

* (Issue 2) Protecting new Merkle root
=>» Solution: obscuring physical location of calculated Merkle root

* (Issue 3) Protecting Merkle root calculation
=>» Solution: reserved register to hold intermediate nodes

= Optimizations
- Eager Auth-VM creation :
- VM debloating Please refer to the paper for details

« Asynchronous verification
, soccf}

) Standalone Evaluation

= KVSEV performs

 (Baseline) 13.38x — 64.23x slower than native KVS
« Similar numbers across varying number of threads, value size, KVS size

—
N N
~ A

=N
w.

Throughput (ops)
- o0
~ ~

uniform

zipfian

-
—
-1

R10 R50 R90 R100
Workload Distribution

59

_
—
_
—_—
1m W

R10 R50 R90 R100

Workload Distribution
socc D

) Standalone Evaluation

= KVSEV performs

 (Baseline) 13.38x — 64.23x slower than native KVS
« Similar numbers across varying number of threads, value size, KVS size

—
N N
~ A

S
~

Throughput (ops)
- o0
~ ~

uniform

. Fal

More writes incurs

more frequent Auth VM renewals

—
_
—
1m W

R10 R50 R90 R100 R10 R50 R90 R100
Workload Distribution Workload Distribution

60

soc D

) Impact of Optimizations

= KVSEV improves performance by

NN
w

Throughput (ops)
2

» 2.3x with eager VM creation

« 5.7x with asynchronous verification
« 14x with Auth VM debloating (151.1 VMs/s = 2156.3 VMs/s)

B KVSEV-128B i KVSEV-1024B

|

| I |

4 32 64
Number of SEV VMs

128 256 512

61

Throughput (ops)

[y

[y

S U
= = = =

B asynchronous

B synchronous

!

soc D

= KVSEV performs better than ShieldStore by

* 1.47x when accommodating large number of key-value pairs

B KVSEV K ShieldStore
R50 R90 R100

W B
o O
X X

XXX XXX XX

Slowdown
(Lower is Better)
—_ D
S

10 80 160 10 80 160 10 80 160
Number of entries (million)

62

soc D

= KVSEV performs better than ShieldStore by

* 1.47x when accommodating large number of key-value pairs

B KVSEV K ShieldStore
R50 R90

R100

7] l\lg ~

Less writes boosts
KVSEV performance

N
o
X

Slowdown
(Lower is Better)

0 x
10 80 160 10 80 160 10
Number of entries (million)

63

(XXX XX

XXX

%

80 160

soc D

= KVSEV performs better than ShieldStore by

* 1.47x when accommodating large number of key-value pairs

B KVSEV [ShieldStore

R50 R90 R100

< S 40x 4 m BN - - -
z 5 : 3
g m |Less writes boosts ’ - K

W — Q X
2 -~ | KVSEV performance - .
— Q) = - ﬁ
- : ; X

(@) X

=

10 80 160 10 80 160 10
Number of entries (million)

64

soc D

W22
\Q;‘,'li\
v

= KVSEV performs better than ShieldStore by

* 1.47x when accommodating large number of key-value pairs

B KVSEV K Shield Overhead of ShieldStore

R50 Roo |increases w/ more # of entries
e g 40x m BN - - 5
g = | Less writes boosts] L &
- VaX P4 pd
2 = | KVSEV performance 140wt m
Ay T : 1 R
o Ox
=

10 80 160 10 80 160 10 80 160

Number of entries (million)
6s SOCCB

) Summary

= KVSEV is a secure in-memory KVS with AMD SEV

= KVSEV protects KVS from physical adversaries by using
ephemeral VMs as safe storage for SW-only Merkle tree roots

) socc D

KVSEYV:
A Secure In-Memory Key-Value Store
with Secure Encrypted Virtualization

Junseunqg You, Kyeongryong Lee, Hyungon Moon,
Yeongpil Cho, Yunheung Paek

Santa Cruz, USA
October 31-November 1, 2023

socc D

