Check for
Updates

SFiITAG: Efficient Software Fault Isolation with Memory Tagging
for ARM Kernel Extensions

Jiwon Seo
jwseo@sor.snu.ac.kr
Seoul National University
Republic of Korea

Junseung You
jsyou@sor.snu.ac.kr
Seoul National University
Republic of Korea

Yungi Cho
ygcho@sor.snu.ac.kr
Seoul National University
Republic of Korea

Yeongpil Cho Donghyun Kwon" Yunheung Paek®
ypcho@hanyang.ac.kr kwondh@pusan.ac.kr ypaek@snu.ac.kr
Hanyang University Pusan National University Seoul National University
Republic of Korea Republic of Korea Republic of Korea
ABSTRACT CCS CONCEPTS

As ARM is becoming more popular in today’s processor market,
the OS kernel on ARM is gradually bloated to meet the market
demand for more sophisticated services by absorbing diverse kernel
extensions. Since this kernel bloating inevitably increases the attack
surface, there has been a continuous effort to decrease the surface

by dissociating or isolating untrusted extensions from the kernel.

One approach in this effort is using software fault isolation (SFI) that
instruments memory and control-transfer instructions to prevent
isolated extensions from having unauthorized accesses to memory
regions of the core kernel. Being implementable in pure software
has been considered the greatest strength of SFI and thus popularly
adopted by engineers to isolate kernel extensions, but software
versions of SFI mostly suffer from high performance overhead,
which can be a critical drawback for performance-sensitive mobile
devices that overwhelmingly use ARM CPUs. The purpose of our
work, named as SFITAG, is to make SFI for ARM kernel extensions
more efficient by leveraging the hardware support from the latest
ARM AArch64 architecture, called the ARM8.5-A memory tagging
extension (MTE). For efficiency, SFITAG relies on MTE support when
it allocates a tag value different from the core kernel for untrusted
extensions and enforces extensions to use that value as a tag for
pointers and memory objects. Consequently, in SFITAG, accessing
the core kernel memory is legitimate only when the tag of a pointer
matches the value of the kernel tag, which by means of MTE in
effect enables us to safely confine unexpected and buggy behaviors
of extensions within the space isolated from the kernel. Through our
evaluation, we prove the effectiveness of SFITAG by showing that
our MTE-supported SFI efficiently enforces isolation for extensions
just with 1% slowdown on the throughput of a network driver and
5.7% on a block device driver.

“Corresponding authors

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-0098-9/23/07...$15.00
https://doi.org/10.1145/3579856.3590341

469

« Security and privacy — Systems security; Software security
engineering.

KEYWORDS

Memory safety; Software Fault Isolation; Memory Tagging Exten-
sion(MTE);

ACM Reference Format:

Jiwon Seo, Junseung You, Yungi Cho, Yeongpil Cho, Donghyun Kwon,
and Yunheung Paek. 2023. Sr1TAG: Efficient Software Fault Isolation with
Memory Tagging for ARM Kernel Extensions. In ACM ASIA Conference
on Computer and Communications Security (ASIA CCS °23), July 10-14,
2023, Melbourne, VIC, Australia. ACM, New York, NY, USA, 12 pages. https:
//doi.org/10.1145/3579856.3590341

1 INTRODUCTION

In recent years, ARM has become the dominant architecture due
to the huge popularity of ARM-based mobile devices. To control
these devices, the ARM operating system (OS) embraces many
kernel extensions, such as network and device drivers, which provide
functionality or hardware support that otherwise would not be a
part of the OS kernel. However, kernel extensions have not been
considered trustworthy in that they are an abundant source of bugs
and vulnerabilities in operating systems [3, 10]. In addition, like
most other modern OSes, the ARM OS has a monolithic kernel in
which every OS component, including kernel extensions, operates
in a single kernel space, holding all privileges to access I/O devices,
memory and CPU modules in the system. This implies that even
one security bug or vulnerability in a kernel extension would be
fatal as such a bug exploited by an adversary might lead with ease
to compromising the entire kernel dwelling in the same space and,
ultimately, the whole system under control of the kernel as well [15,
32]. In light of all these, it is evident that unless this potential threat
posed by such buggy, untrusted extensions is properly tackled, the
ARM kernel would always remain at a high risk of being subverted
and manipulated by adversaries.

For many years, diverse studies [9, 13, 20, 20-23] have been con-
ducted to combat these constant menacing bugs lurking in the OS
kernel. The tactic they opted for is basically the same: isolating un-
trusted extensions from the rest of the kernel. This is implemented
first by constructing an isolated domain where any unauthorized
access from inside to outside is strictly banned, and placing an

https://orcid.org/0000-0003-1848-750X
https://orcid.org/0000-0003-1539-229X
https://orcid.org/0000-0003-1297-8586
https://orcid.org/0000-0001-7842-1719
https://orcid.org/0000-0002-7507-3111
https://orcid.org/0000-0002-6412-2926
https://doi.org/10.1145/3579856.3590341
https://doi.org/10.1145/3579856.3590341
https://doi.org/10.1145/3579856.3590341
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3579856.3590341&domain=pdf&date_stamp=2023-07-10

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

untrusted extension into the domain. One prominent technique for
this kernel isolation would be software fault isolation (SFI) [30, 33]
that establishes an isolated domain (i.e., sandbox) by instrumenting
memory and control-transfer instructions in a way to regulate all
accesses from an untrusted extension within its domain boundaries.
This isolation mechanism of SFI can transform legacy software
encompassing existing kernel components by instrumentation to
allow security-critical code to run safely in the same memory space
as the untrusted party. One attractive merit of SFI is its diversity
in granularity at several levels for memory isolation that helps us
enjoy the benefits of high precision in access control. Specifically,
SFI offers memory isolation not only at page-level granularity but
at finer levels such as byte and word. For instance, in previous
work [9], by using SFI, the authors were able to accurately regulate
data access of every domain at byte-level granularity.

The greatest strength of SFI would be that it is implementable
in pure software. But the same strength becomes a weakness in
terms of performance as software versions of SFI usually find much
harder time meeting performance constraints thus suffering from
serious performance degradation, which can be a critical draw-
back for ARM-based mobile devices that we are targeting in our
work. For example, one SFI solution for isolating kernel extensions
induces over 30% throughput loss because of the increased time
and frequency to look up the permission tables for isolating many
memory blocks [9].

Fortunately, a more recent study reveals a glimpse of evidence
that SFI can become a lot more efficient with the benefits of hard-
ware performance to a certain extent [16]. Motivated by this empir-
ical study, we in this paper propose SFITAG, a SFI solution that aims
to efficiently isolate untrusted extensions from the ARM OS ker-
nel by gaining hardware support of the memory tagging extension
(MTE), ARM’s new architecture feature introduced to the newest
generations of AArch64 CPUs. The ARM MTE implements lock and
key access to memory. For this, every pointer and memory object is
augmented to hold tags (pointer tag and memory tag). Only when
the tag values in the pointer and memory object are matched, the
memory access to the object via the pointer is permitted. With this
hardware-supported memory access policy exerted by MTE, SFiTAG
is able to efficiently enforce SFI on ARM-based mobile systems in
which efficiency is usually of higher priority than in desktop or
server systems. SFITAG isolates an untrusted extension from the ker-
nel by compelling all memory objects and pointers in the extension
to use different tag values from those used by objects and pointers
in the core kernel. Notably, MTE performs tag check in parallel with
an ordinary memory operation, thus saving extra cycles that would
otherwise be necessary to sequentially execute instructions for tag
check in a pure software version of SFI. Our evaluation demon-
strates that being aided by MTE hardware tagging, SFITAG is able
to isolate a network driver with just 1% slowdown on reception.

2 RELATED WORK

Previous work related to ours can be categorized according to their
ways of implementing kernel isolation as follows.

User-level Extensions. One way adopted by researchers [7, 8, 25,
26] is to realize kernel isolation by running an untrusted kernel ex-
tension as a user process. Like an ordinary user process, extensions

470

Seo et al.

have lower privilege than the kernel, and consequently, they cannot
gain enough privilege to access kernel regions. To allow the exten-
sion to communicate with a physical device in user space, they have
to redesign the interface between user and kernel spaces because
executing privileged CPU instructions and handling interrupts in
user space are not permitted. As a consequence, isolating some
kernel extensions at user-level requires a painstaking effort, which
complicates and impedes a quick application of this approach to
certain OSes like Linux that have complex and irregular interfaces.
On the other hand, SFITAG lets isolated extensions run in kernel
space, thus requiring virtually no effort to rewrite kernel interfaces.

Microkernel. For kernel safety, some researchers [6, 14, 22] built
microkernels by maintaining only the core functionality in the
kernel in the first place, and outsourcing the remainder part of a
monolithic kernel. As kernel extensions are mostly excluded from
the core part of a kernel, the microkernel design itself plays a role of
a natural barrier for the core kernel against threats from malignant
extensions. Most recently, there have been efforts to develop mi-
crokernels in safe languages, such as RedLeaf [22] written in Rust
fortifies with security features that offer SFI. In RedLeaf, the authors
have demonstrated that their microkernel is immune from attacks
exploiting vulnerabilities in a network driver. Notwithstanding such
a security strength, the defense solutions using microkernels have
a critical drawback that they require a rewriting of the entire OS
kernel. Considering the fact that a vast majority of kernels deployed
in the field today are monolithic, this approach has limited applica-
bility to the real world. In comparison, SFITAG has a clear advantage
in that it can be applied directly to harden existing monolithic OS
kernels by adding a relatively small amount of instrumented code.

2.1 Page Table Switching

Other researchers tackle the kernel isolation problem by employing
the page table (PT) switching mechanism by disabling by default
their access permission to the kernel. In their approach, all functions
are wrapped to intercept every interaction, and upon function invo-
cation, PTs are examined to validate accesses from extensions to the
kernel code and data. The representative studies in this approach
are Nooks [29] and SIDE [28]. The techniques in this approach suffer
from the performance overhead associated with control transfers
between the kernel and isolated extension. For each control transfer,
there occurs a context switch accompanying routine procedures,
such as loading/unloading PTs and flushing TLB, which all in all
adversely affect performance. Some researchers have made effort
to minimize the adverse impact on performance of the original PT
switching mechanism by utilizing hardware features, such as ARM
Memory Domain [1]. ARM Memory Domain assigns memory pages
into different domains and the MMU checks its access permission
based on the Domain Access Control Register (DACR). For example,
ARMLock [35] establishes fault isolation for user applications by as-
signing different domain IDs to the host application and untrusted
modules such as libraries. However, since ARMLock is designed
to isolate the user process, it is not directly applicable to kernel
extensions. On the other hand, DIKernel [19] enforces isolation
by allowing kernel and extensions to use different domains. With
hardware support, DIKernel and ARMLock do not need loading PTs
or flushing TLB, and only require updating the DACR register. How-
ever, their performance number is still disappointing, and DACR is

SFITAG: Efficient Software Fault Isolation with Memory Tagging for ARM Kernel Extensions

no longer available in recent ARM architecture. In contrast, SFITAG
uses SFI that does not require in the first place such burdensome
OS-level operations for its domain switching since both the kernel
and isolated extensions are running in the same kernel context.

Virtualization. There have been various studies [12, 13, 17, 21, 23]
to isolate kernel extensions relying on the virtualization mecha-
nism. For isolating untrusted kernel extensions, it creates a special
virtual machine (VM) designated to be an isolated domain that
is to hold a kernel extension inside [12] and blocks unvetted ac-
cesses to kernel memory regions from inside the VM by configur-
ing the corresponding extended page table (EPT). The downside
of this approach, however, is that it often suffers from a consider-
able amount of performance overhead due to domain switching. To
alleviate this performance problem, some proposed optimization
methods [21, 23] that leverage hardware features of Intel state-of-
the-art x64 architectures. For example, LVDs [23] seeks additional
hardware support from vmfunc instructions for EPT switching that
is intended to lower the overhead of memory isolation and domain
switching. Such dextrous use of hardware serves their goal of per-
formance optimization. Most notably, the domain switch overhead
of LVDs is merely 396 cycles, which is a lot lower than 834 cycles
for page-based context switches [23]. Due to this performance ad-
vantage, KSplit [13] relies on LVDs framework to support isolation
between kernel and extensions with minimal human involvement.
However, unluckily for users who want to protect their kernels
running on ARM, these optimization techniques will be of no avail
since ARM does not support the vmfunc instruction. Instead, for
those ARM users, we have designed SFITAG to leverage the ARM
MTE architecture for accelerating the performance of a SFI solution
implemented to isolate ARM kernel extensions.

Software Fault Isolation. Since SFI can establish a sandbox by
instrumenting memory and control-transfer instructions, there are
many studies [9, 11, 20, 30] to isolate kernel extensions by putting
the extension in the isolated domain in SFI. For example, BGI [9]
provides an access control list (ACL) that defines the accessible
regions for each extension at the byte level. By referring to ACLs,
it can accurately isolate memory blocks variably sized in pages,
words and even bytes at every interaction between the kernel and
extensions. As another example, LXFI [20] provides an elaborated
annotation system that can be used to program access permissions
for isolated extensions to the kernel. Developers may set up the
rules at their disposal by annotating specific kernel interfaces to
an untrusted extension that they want to isolate. Essentially all
aforementioned SFI techniques have been implemented and de-
ployed fully in software. As has been said before, being deployable
in pure software is a sure strength of SFI, but it can also be a gen-
uine weakness that causes security loopholes. That is, most existing
software solutions exclude the application of SFI to untrusted read
accesses to the kernel, which would put the kernel at high risk of
being exposed to vulnerability exploits via unchecked reads. SFrTAG
outperforms software-based SFI techniques even though it checks
both read/write access.

Tagged Architecture. The memory tagging approach has long
been studied previously [27, 31, 34]. To enforce fine-grained mem-
ory protection using tagged memory, HDFI [27] and CHERI [31] use
a 1-tag bit while Loki [34] uses a longer 32-bit tag. However, a clear

471

ASIA CCS 23, July 10-14, 2023, Melbourne, VIC, Australia

ptrl

1 Address [=—-» I oxsefe -

[59:56)

Koot 40l |
ptr2

Address

i
H
1
159:56] i
i
i
i

ptr3 | 15
15 Address [
159:56] Program memory 4-bit Tag
memory

Figure 1: An example of ARM MTE operation

limitation of all these techniques is that they require special cus-
tomized hardware, which hampers their application to real-world
kernels running on commodity devices. In other words, a significant
hardware redesign, such as the entire memory hierarchy and inter-
faces is required to implement fault isolation. In contrast, SF1ITAG
is suitable for a wide deployment because it requires no specific
processor change or redesign to enforce isolation for extensions,
but uses the existing feature of commercial processors.

3 BACKGROUND

As mentioned in § 1, SFITAG relies on the hardware support from
ARM MTE. Thus, in this section, we describe the architectural
structure of MTE and its functionalities [4]. MTE is an architectural
extension to improve the performance of memory sanity checks
in ARMv8.5-A architecture. In specific, MTE introduces two types
of tags: pointer tags and memory tags for pointers and memory
objects, respectively. A pointer tag is a 4-bit ID located at the upper
bits (i.e., [59:56] bits of the address), which is ignored in address
translation. A memory tag is a 4-bit ID for every aligned 16-byte
physical memory. The memory tag is stored in a separate memory
and the memory is not accessible from ordinary memory instruc-
tions. Instead, MTE provides several special instructions to access
memory tags. For example, 1dg and stg are instructions for loading
and storing the memory tag, respectively. After MTE is enabled, the
ordinary load and store instructions can access the memory if only
the pointer tag in the address register and memory tag for the mem-
ory address match. When the tag comparison fails, the behavior of
the architecture can be configured in two modes: precise mode or
imprecise mode. The former mode throws a synchronous exception
when a mismatch occurs, and the latter mode asynchronously re-
ports the mismatch by updating the system register TFSR_EL1. In
SFITAG, we use the precise mode. Exceptionally, MTE unchecks for
memory access if memory instructions that use the stack pointer
(SP) as the base register only or with an immediate offset, e.g., str
Xo, [SP, #0x10].In the case of memory instructions that use SP as
a base register and register offset, e.g., str Xo, [SP, X11, MTE per-
forms tag checks. In addition, if the 4-bit ID is @xF and the value of
TCMA1 in TCR_ELx is @x1, all accesses at EL1 are unchecked, which
means OxF tag value in the kernel space has a special property that
can access the memory regardless of the memory tag value. Figure 1
shows an example of MTE operation. Each tag in ptr1, ptr2 and
ptr3 has a unique ID. Two sequential memory regions have been
allocated in a granule of 16 bytes. For the ptr1 or ptr2, it is allowed
to access the program memory if a pointer tag matches a tag of

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

the memory to be accessed. By contrast, if the tag mismatches, it is
deemed to have illegal memory access, thus access is disallowed
and the exception alarm is raised. However, any access via ptr3
with pointer tag @xF is permitted without raising an exception on
mismatch.

4 THREAT MODEL

In this paper, we design SFITAG based on the following assump-
tions and attack model. Firstly, we trust the core kernel including
components of SFITAG, along with the assumption that it is benign
and intact. Thus, we can trust the management of MMU by the
kernel, and we assume that WeX policy is basically applied to the
untrusted extension as well as the core kernel. We assume that
the extensions are vulnerable but not malicious. In other words,
the developer for the extension does not implement the extension
intentionally for malicious purposes but for the original intended
purposes. However, we assume that there are memory vulnerabili-
ties in the extension, and an attacker can exploit these to launch
various attacks, such as code reuse attacks and data manipulation
attacks. The ultimate goal of this potential attacker is to launch an
attack on the kernel through vulnerabilities in the extension. Thus,
we concentrate on the isolation of the extension to prevent the case
that it invades and corrupts the kernel. We do not consider the
situation where the hardware device of the extension is malicious.
It is known that other security solutions using IOMMU in x86 or
System MMU in ARM can thwart such threats [19]. Lastly, we do
not consider side-channel attacks and DoS attacks on the extension.

5 SFITAG DESIGN

This section first defines a list of the requirements that SriTac
should satisfy for securely and efficiently isolating untrusted exten-
sions, and explains how Sr1TAG fulfills those with ARM MTE.

5.1 Design Requirements

e R1. Comprehensive access control: Under our threat model,
an attacker is able to access the kernel data by exploiting mem-
ory vulnerabilities in extensions. Thus, SFITAG should provide a
memory access control mechanism to block any illegal accesses
to the kernel. Note that, in some SFI works [9, 20], they only
regulate memory write operations to avoid excessive runtime
checks for read access control. However, this decision for per-
formance optimization may induce security loopholes in that
unauthorized reads to the kernel memory also can be a major
threat to the system [24]. In addition, SF1TAG should enforce that
domain switches occur at the predefined entry/exit points, or an
attacker can execute the kernel code in an unlawful context.

e R2. Fine-grained protection: The monolithic kernels in mod-
ern OSes like Linux communicate with kernel extensions through
shared data which are stored intermingled with other data in
kernel space. Since they usually enforce memory protection at a
single granularity (i.e., a page), it is impossible to provide individ-
ual access control for shared data differently from other kernel
data if both are stored together in the same page. Obviously,
in this case, for perfect isolation of the kernel extension, it is
somehow necessary to provide a fine-grained memory protec-
tion mechanism that first divides a page into smaller byte-sized

472

Seo et al.

Binary verifier Untrusted Extension \ﬂ'mcLl
@
= x
T ret=untrusted_func()

LLVM @j [@ L

SFITAG Pass

SFITAG Runtime kernel_callback ()

K2E_wrapper TiWzet ret;
® I

‘ E2K_wrapper

Source code I

(with SFITAG APIs)

Tag
SFITAG Initializer f—] E

Linux Kernel

SFITAG Linux Kernel
Untrusted Extension

Figure 2: Overall architecture of SFiTac

blocks for access control, and sets permission bits to grant the
extension access only to the corresponding blocks for shared data.
Not only that, we need to provide another mechanism that pre-
vents temporal safety violations by enabling access permissions
to this shared data only when the extension is being executed.

¢ R3. Low performance overhead: In the design of a SFI solu-
tion for kernel isolation, the importance of performance cannot
be overemphasized. As discussed in § 1, existing solutions, due
mainly to their implementations in pure software, suffer from a
considerable amount of performance overhead. We have found
that the overhead comes from additional instructions inserted
into the original code. In our design, we will try to reduce the
overhead due to software instructions by replacing the instruc-
tions with hardware operations carried out in parallel.

5.2 Overview

Figure 2 gives an overview of how SFITAG uses MTE to isolate kernel
extensions. For our work, kernel extensions have been slightly mod-
ified to use SF1TAG APIs and recompiled with the SFrTaG compiler
to generate binaries instrumented following the procedures. Like
other SFI solutions, SFITAG provides the SFITAG verifier to check if
extension binaries are truly generated by the SF1TAG compiler be-
fore they are loaded into the kernel. As stated in § 1, SFITAG isolates
kernel extensions by forcing them to use MTE tag values differ-
ent from that of the core kernel. To enforce all-around isolation
from initiation to operation, both the SFITAG initializer and runtime
collaborate to intervene in the execution of an extension at every
step, and assign or update tag values of all memory objects and
pointers associated with the extension. We emphasize that SFitac
satisfies all the design requirements specified in § 5.1. First, SFITAG
meets R1 by completely regulating accesses of kernel extensions
to all types of kernel memory regions including heap, stack, and
MMIO. Second, SFITAG satisfies R2 with the help of ARM MTE
that specializes in enforcing finer-grained memory access policies
than conventional techniques for address space masking. Lever-
aging such an advanced hardware feature substantially decreases
the always-on overhead for memory access that SFI solutions com-
monly impose on applying security policies. In addition, SFrTAG
achieves R3 by employing optimization techniques to minimize
the amount of code instrumentation.

In the followings, to clarify our MTE-supported SFI mechanism,
we elaborate on how SFITAG manages MTE tag values regarding ker-
nel memory objects (§ 5.3), stack (§ 5.4), MMIO (§ 5.5), and control
flow (§ 5.6) for secure and efficient isolation of kernel extensions.

SFITAG: Efficient Software Fault Isolation with Memory Tagging for ARM Kernel Extensions

All our tag management tactics are executed by the SFITAG com-
ponents, such as compiler, verifier, initializer and runtime, whose
details will be explained in § 6.

5.3 MTE-supported Memory Isolation

As in § 4, we assume adversaries who can exploit any memory
vulnerabilities and launch various types of attacks, such as data
corruption and control hijacking attacks, within kernel extensions.
Under such a strong assumption, SFITAG employs ARM MTE to
isolate the extensions, and eventually to prevent the adversaries
from accessing the core kernel at their disposal. To be specific,
SFITAG enforces an invariant that extensions must be assigned
designated tag values that are not assigned to the core kernel. Since
ARM MTE prohibits memory accesses upon a mismatch between
the memory and pointer tags, this invariant ensures extensions are
blocked from touching the kernel data arbitrarily.

SriTAG implements the aforementioned invariant by assigning
the predefined tag value, 0xF, to the core kernel, and all the other dif-
ferent values to extensions. There are two reasons SFITAG adopted
this tagging method. First, as explained in § 3, @xF is a special
pointer tag value designated to allow unrestricted memory access
in the kernel. Therefore, by assigning this tag value to the core
kernel, SF1TAG can enforce a memory access policy biased toward
the core kernel over extensions. That is, the kernel can access the
memory region for extensions, but not vice versa. The tag assign-
ment method is also beneficial in terms of performance. Since the
kernel occupies upper address space in Linux, all kernel pointers
naturally hold the tag @xF, which implies that SF1TAG can avoid
explicit tag assignment operations to these pointers. To realize the
tag assignment method even in any adversarial situations, SFITAG
conducts some code analysis and instrumentation for managing
memory and pointer tags, which are as follows.

Memory Tags. Adversaries with full control over kernel extensions
may try to arbitrarily manipulate memory tag values, especially
to access the core kernel. To thwart this, the SF1TAG compiler and
verifier ensure that extension binaries do not include any memory
tag store instruction (i.e., stg). This constraint is imposed for se-
curity reasons, but it may hinder extensions from accessing their
own or sometimes core kernel’s memory objects that are neces-
sary in their operations unless these objects are given the same
memory tags as the extensions. The SFITAG runtime addresses this
contradictory situation by engaging a set of wrapper functions that
manage memory tags on behalf of the extensions. For example,
when extensions try to allocate memory objects, they can invoke
the wrappers, which then handle the request through the kernel’s
memory allocators and in turn assign the allocated objects the tag
values of the extensions. The wrappers also possess an authority
to grant the extensions to access kernel objects. In this case, they
temporarily change tag values of the target kernel objects to those
of the extensions. Details are explained in § 6.1.

Pointer Tags. Adversaries who cannot control memory tags any-
more may alternatively try to manipulate pointers’ tag values for
accessing out of the isolation boundary. An intuitive way to fend
off this threat is to deprive the adversaries of control over pointer
tags as with the case of memory tags. Unfortunately, this intuitive
solution is not feasible in reality because there are many easy paths

473

ASIA CCS ’23, July 10-14, 2023, Melbourne, VIC, Australia

to modify pointer tags that are stored in the, publicly known, upper
part of pointers. For example, pointers stored in memory can be
overwritten by memory store instructions, and their values can be
changed by pointer arithmetic instructions. Instead of this method,
therefore, SFITAG employs a masking method to force the use of the
designated pointer tags in all pointer dereferences within kernel
extensions. The cases 1 and 2 of Table 1 show how the masking
method is realized by instrumenting memory instructions in the
kernel extension code. SFITAG first reserves a dedicated register
(Xrso) that the designated pointer tags of the extensions have al-
ready been written in the topmost bits. It then adds before every
memory instruction a bitfield move instruction, which moves spe-
cific bits from the source register to the destination while leaving
the other bits unchanged. The added bitfield move instructions
copy the memory target address stored in a register (X;;) to the
dedicated register while preserving its pointer tag. Lastly, SF1TAG
changes memory instructions to use the dedicated register as a tar-
get address register. To sum up, this masking method ensures that
the dedicated register always holds the designated pointer tag and
memory instructions only use this register for referring to a target
address. As a result, in no way can adversaries perform a memory
access using other than the designated pointer tag. Compared to
the conventional address masking method of the previous SFI so-
lutions, our method brings two major benefits. First, as shown in
Table 1, our method minimizes the number of added instructions to
just one, thereby reducing a lot of performance overheads. Second,
our method provides finer-grained memory access policy thanks
to ARM MTE so that it can even be applied to kernel extensions in
which associated memory objects are highly scattered.

5.4 Extension Stack Isolation

As said in § 3, ARM MTE does not check memory instructions
using the stack pointer (SP) as a base register. Therefore, if these
stack memory instructions are abused through stack buffer over-
flow or code reuse attacks, our memory isolation policy described
in § 5.3 between the core kernel and extensions can be bypassed.
To tackle this problem, we opt for a simple but expensive strategy
that applies the address masking method of previous SFI solutions
to every stack memory instruction. For more efficiency, we add
an optimization technique as follows when this method is applied.
First, when an extension starts to run in the kernel, we have de-
signed the SFITAG runtime to allocate a separate memory region for
the extension’s stack. Then we have modified the extension code
to invoke the SFITAG runtime to check every instruction that sets
the SP value (e.g., mov SP, Xp). Since the extension and the kernel
are now having their own stacks, the SFITAG runtime can ensure
the integrity of the extension stack simply by checking bounds of
the stack’s pointer. Adversaries also may manipulate the SP with
memory instructions (e.g., 1dr Xo, [SP, #0x20]) to access the
kernel memory adjacent to the extension stack. To detect malicious
attempts to misuse these SP-based instructions, SFITAG places two
inaccessible redzone pages adjacent to the both sides of the exe-
cution stack. As the immediate field of the SP-related instructions
are less than or equal to 12-bits, the maximum immediate value is
32760 which is the same with the redzone pages size. Therefore,
any attempts of accessing outside the stack using the SP-based

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

Table 1: Instrumented instructions by the SF1TaG compiler

Case Original Instruction Converted Instructions

bfxil Xpsp, Xm, #0, #38

! [4r¥n, Xm] 1dr Xp, [Xrso]
) . bfxil Xy-50, X, #0, #38
str Xn, [Xrso]
bfxil X;sp, I, #0, #38
3 ret 1dr XZR, [Xrso]
br Xrso
bfxil X;-s0, Xn, #0, #38
4 blr(br) Xz, 1dr XZR, [Xrso]

blr(br) Xrso

instructions are trapped by redzones. But adversaries still may be
able to bypass redzones by exploiting SP-based arithmetic instruc-
tions that add/subtract a immediate value to/from the SP, e.g., sub
SP, SP, #0x20.If the immediate value is larger than the size of
redzone pages, we insert check operations for the SP. Even more,
adversaries who are able to subvert control flows can (1) modify the
SP outside the extension stack by executing the arithmetic instruc-
tions repeatedly, and (2) execute a SP-based memory instruction. In
this case, the malicious memory access will not be trapped by the
redzone pages. To prevent this problem, the SFrTAG compiler finds
all code patterns that there are indirect jumps between SP-based
arithmetic instructions and SP-based memory instructions. The
compiler then adds bounds check instructions for the SP before the
indirect jumps, detecting abnormal modification of the SP.

5.5 MMIO Access Control

The most common use case of kernel extensions is device drivers to
handle interactions between devices and the kernel. Unlike many
kernel components which only need to access main memory (i.e.,
DRAM), device drivers need to have access to device memory as
well. For such access, ARM provides the Direct Memory Access
(DMA) or the memory-mapped I/O (MMIO) mechanism to allow
drivers to access device memory. While DMA allows device drivers
to access memory without using virtual memory, MMIO allows
device memory to be mapped to kernel virtual address space, mak-
ing device memory accessible with the same memory instructions
as main memory. This means that SF1TAG should be able to inter-
vene in kernel extensions accessing device memory via memory
instructions. Unfortunately, SFITAG cannot make use of ARM MTE
for this purpose because MTE only provides access control for main
memory. To overcome this limitation, SFITAG inevitably applies to
memory instructions the conventional address masking method of
the previous SFI solutions. Specifically, SFITAG performs the address
masking operation for device memory as well as the preserving
operation for pointer tags before every memory instruction in the
extensions. However, it is worth noting that SFITAG can carry out
these two operations with only a single bitfield move instruction.
For this, we adjust the virtual address space for the kernel as follows.
First, we map all device memory, which is by default mapped to a
vmalloc region through ioremap function as in Figure 3-(a), to the
high address of the kernel virtual address space by adjusting its base
offset (Figure 3-(b)). Second, we change the linear mapping region
to be placed within the bottom half of the kernel virtual address
space by resizing the vmalloc region as in Figure 3-(b). Now, we

474

Seo et al.

OXFFFF_FFFF_FFFF_FFFF -=====-

ioremap

linear mapping

OXFFFF_FFC0_0000_0000
vmemmap vmemmap

fixma fixma
OXFFFF_FFBE_BFFF_0000 B - xmep

linear mapping

vmalloc

vmalloc

| ioremap]|

OXFFFF_FF80_0800_0000 ===---

module module

(a) (b)

OXFFFF_FF§0_0000_0000

Figure 3: Kernel virtual address space layout. (a) shows the
default layout, and (b) shows the changed layout

can distinguish the memory access for device memory and ker-
nel memory by comparing the 38th bit in the address (‘0 for the
kernel memory and ‘1’ for the device memory). As a consequence,
by preserving upper 26 bits (including pointer tags in the bits 56
to 59) of the memory target address, we can enforce the memory
instructions for the main memory not to access the device memory.
On the other hand, we also regulate the memory operations for
device memory to not to access the other device. In Linux kernel,
the access to the device memory is carried out through invoking
specific kernel functions (e.g., readl and writel), so we check the
boundaries of the device memory which are defined by the user
using SFITAG APIs § 6.2 against the memory address passing to
those kernel functions.

5.6 MTE-based Control Flow Isolation

Adversaries are capable of altering the control flow at runtime by
manipulating the target address of indirect jumps and calls (e.g.,
function pointers or return addresses) in extensions. With such a
capability, they may attempt to execute the kernel code and the
SFITAG runtime code. Since the code includes sensitive instructions,
such as privileged instructions for memory management or mem-
ory tagging instructions, the adversaries can neutralize SFITAG by
executing these instructions. To cope with this threat, SFITAG again
utilizes ARM MTE as follows. SFITAG assigns designated tag values
of extensions to legitimate indirect jump/call target addresses, such
as entries of wrapper functions and extension functions, during the
initialization of extensions. At run-time, SFITAG checks the validity
of the tag value assigned to target addresses by executing a memory
load instruction before indirect jumps/calls as shown in the case 3
and 4 of Table 1. Because code other than those legitimate ones is
not assigned to the accurate tag values, any attempts of malicious
indirect jumps/calls to subvert control flow will be caught. It is
noteworthy that the load instructions for tag checking use the XZR
register whose value is always zero as a destination register so that
SFITAG can avoid possible side effects caused by the load instruc-
tions. However, as ARM MTE provides a memory tag at a 16-byte
granularity, we should note that adversaries can execute arbitrary
instructions within 16-byte code blocks of the legitimate target
addresses. To mitigate this problem, SFITAG aligns instructions in
the legitimate target addresses at a 16-byte boundary. Note that
SFITAG does not apply this alignment policy to the extension, just

SFITAG: Efficient Software Fault Isolation with Memory Tagging for ARM Kernel Extensions

to the SFITAG runtime that intervenes all control transfers between
the extension and the kernel. Surely, the adversaries can also at-
tempt to bypass the tag validity checks by skipping the execution of
the added load instruction via any control-hijacking attacks in the
extension. To overcome it, SFITAG again uses the method of reserv-
ing a dedicated register similar to § 5.3. Specifically, as described
in Table 1, SFITAG makes only the dedicated register hold target
addresses, thereby thwarting any attempts of arbitrarily modifying
the target addresses to execute indirect jumps/calls bypassing the
tag checks.

6 IMPLEMENTATION

As described in § 5.2, SFITAG consists of several components. In this
section, we explain how these components are implemented and
work.

6.1 SrFriTAG Runtime

The Sr1TAG runtime has wrapper functions to supervise all control
transfers between the kernel and extensions. It also has utility
functions for tagging operations and tag checking operations (i.e.,
TAG and CHECK). The wrappers can be divided into two categories.
One includes functions for intervening when the kernel enters
the isolated domain of an extension (K2E wrappers). The other
includes those for when an extension invokes kernel functions
(E2K wrappers). Figure 4 shows the workflow of these wrappers.

The role of these wrappers is to support domain switches in
Sr1TAG. Specifically, K2E wrapper assigns a tag value for the called
extension to X,g, register exclusively reserved for holding a tag
value and changes SP register to point to the execution stack. Then,
K2E wrapper performs memory tagging operations, thereby al-
lowing an extension to access passed arguments while running
extension functions. Note that how to assign memory tags to mem-
ory objects that are used in the extension function like arguments
is configured by the developers using SF1TAG APIs (see § 6.2). After
that, the extension function is called in K2E wrapper. Once the
extension function is returned, memory tags for arguments are
changed to hold 0xF that is used for the kernel. And X, register
is cleared and SP register is changed to point the kernel stack.

In the case of E2K wrapper, similar to K2E wrapper, the values of
Xrso register and SP register are configured depending on whether
the extension code is executed or the kernel code is executed. How-
ever, memory tags for the arguments of the kernel function are not
changed before calling the kernel functions. Because the kernel is
working with @xF as the value of pointer tag and this pointer tag
can access the any memory objects regardless of the value of the
memory tag of them. Instead, the E2K wrapper performs an opera-
tion that checks whether the extension function passes arguments
having the tag value dedicated for the extension. Note that, when
the extension tries to run kernel functions for MMIO accesses, the
wrappers check if the passed pointers are within legal boundaries,
instead of checking tags. On the other hand, the tag operation is
performed to the memory object returned to the extension because
this object should be accessible in the extension.

6.2 SriTtac Compiler

We provide four APIs for developers to relieve their efforts of inte-
grating the extension with our system, as follows:

475

ASIA CCS ’23, July 10-14, 2023, Melbourne, VIC, Australia

Kernel SFITAG runtime Extension

Kernel_func_B {

K2E
Workflow || call ext_funcY'

ext_func_Y {}

=

Extension SFITAG runtime Kernel

extfune X wrap_kernel_func_A

CHECK (arguments)
call kernel_func_A
TAG(ret)

E2K || callkemel func A

Workflow
o
N

kernel_func_A {}

[T

return ret

Figure 4: Workflow between the kernel and an extension

setTag(ptr, size, tag, depth). This API allows developers to assign
a memory tag, tag, to the memory region [ptr, ptr + size),
granting or revoking access to objects used in extension functions.
For example, in Listing 1, Lines 7-8 and 23-25 show the code that
grants and revokes access to the arguments (i.e., skb, dev) of the
stmmac_xmit function, respectively. Note that they use different tag
values as arguments of the API call (0x1 at Lines 7-8 and @xF at Lines
23-25). This API is also used when the extension invokes a kernel
function. At Line 11, the extension invokes netdev_priv function
and receives the pointer variable (i.e., struct stmmac_priv)asa
return value. Before invoking the function, SFITAG checks that dev
has the correct tags (Line 10). To grant access to the memory object
that the pointer points to in the extension function, setTag is used
in Line 12. On the other hand, in Line 18, as des is a local variable
and is stored in the extension stack, setTag is not called. SFiTAG
also provides depth as a parameter that enables our tagging mech-
anism to conveniently assign a memory tag to a multi-level object
which contains a set of member objects aggregated in a hierarchical
structure with one root member. Given the depth value n, SFiTAG
gives tags to all member objects down to level n in the hierarchy
from the root at level 0. This is surely convenient for developers
as they can tag a group of objects at once without individually
annotating each object in the group. For example, Line 7, 12, 23 and
25 show that the developer tags objects with depth 1.
checkTag(ptr, size, tag, depth). This API checks if a memory tag
of the memory region [ptr, ptr + size)matches tag. For example,
arguments are checked to have appropriate access rights before
invoking a kernel function in Line 10 and Lines 16-17. Likewise
setTag, this API also has a depth parameter, so the developer can
check the tags of multiple member objects in the multi-level object
at once.

setBound(addr, size). This API sets the bounds of MMIO region
for the extension to [addr, addr+size) as explained in § 5.5.
checkBound(addr). This API checks if addr falls within the bounds
established by sfitag_set_bounds. Developers can insert APIs be-
fore MMIO access functions (e.g., readl, writel) as in Line 33. These
annotations are used to generate wrapper functions by adding ap-
propriate operations to the prologue and epilogue of each function
according to the developer’s directions conveyed in them. Those
additional instructions are mostly for tagging operations which
will be executed by wrappers in the SFITAG runtime. For example,
the wrapper for function netdev_priv is augmented with tagging
operations of the returned object priv. Likewise, tag-checking op-
erations are added before the call site for the kernel function in the

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

wrapper of wrap_dma_map_single due to the annotations in Lines
16-17.

6.3 Extension Loading Procedure

When an extension is installed in the kernel, the following proce-
dures are carried out for the SFITAG to operate normally at runtime.
First, the tag manager in the kernel allocates a tag value for the
extension and registers the value to its own table. Through this
tag registration process, we can prevent newly installed extensions
from either accidentally or maliciously sharing the same tag value
with running extensions. Next, while loading the extension, the
SFITAG runtime performs a series of tagging operations as follows;
(1) allocating tagged memory pages for the extension stack and
making all adjacent pages around it inaccessible, (2) assigning mem-
ory tags for valid jump targets to enforce control flow isolation
at runtime, and (3) assigning the memory tag to the extension’s
private objects to reduce tagging operations at runtime.

6.4 SrriTAG Verifier

We provide the SFITAG verifier to assure that the extension is cor-
rectly isolated. The verifier scans the binary file of the extension to
check if the following invariants are enforced. The first one is that
there are no unsafe instructions, such as privilege instructions and
memory tagging instructions which may deprive the protection of
SFITAG. One such instruction is a privileged instruction that can
disable MTE in the system. Another is an MTE instruction that
can be used to bypass SFITAG by changing the memory tags in the
extension. The second invariant is that the SFITAG instrumentation
is correctly applied to all memory and indirect jump instructions.
Note hereby that the verifier should ensure no instruction to take
Xrso as its operands except the instrumented memory and indirect
jump instructions. The next invariant is that there is no instruction
assigning arbitrary values to SP register without sanitization check.
Finally, the last is that the target addresses of all direct jumps remain
within the code region for the isolated extension or the address of
wrapper functions.

6.5 Multithreading Support

Today, most OS kernels support multi-threading, so we designed
SFITAG to support the multi-thread as well. First, since there is
one memory tag per physical memory not per thread, we have to
consider the race condition that multiple threads try to access the
same memory tag. For example, assume that there are two functions,
A and B, and they use different tag values, i.e., tag_a and tag_b, to
access the shared kernel data K. When function A runs first, kernel
data K is tagged by tag_a. Then, if function B is invoked on the
different cores simultaneously before function A is over, function
B would try to assign the kernel data K with tag_b. Consequently,
this change makes function A unable to access the kernel data K
since the memory tag and pointer tag are not matched. To deal
with this, we have relied on the coding patterns in the extension
for the shared kernel data. When developers implement a kernel
extension, they apply the synchronization mechanism of OS kernel
to the memory access which can cause a race condition. In other
words, we put the code that checks the memory tag and performs
the tagging operation only to the memory operations in the critical

476

Seo et al.

1 static netdev_tx_t stmmac_xmit
2 (struct sk_buff xskb, struct net_device *dev) {

4 unsigned int des;
5 unsigned int len = skb_headlen(skb);

7 setTag(skb, sizeof(struct sk_buff), ox1, 1);
s setTag(dev, sizeof(struct net_device), 0x1, 0);

10 checkTag(dev, sizeof(struct net_device), 0x1, 0);
11 struct stmmac_priv *priv = netdev_priv(dev);
12 setTag(priv, sizeof(struct stmmac_priv), 0x1, 1);

14 /% code execution */

16 checkTag(priv->device, sizeof(struct net_device), 0x1, 1);
17 checkTag(skb->data, sizeof(struct sk_buff), ox1, 1);

18 des = wrap_dma_map_single(priv->device, skb->data,

19 len, DMA_TO_DEVICE);

21 /* code execution */

23 setTag(skb, sizeof(struct sk_buff), oxf, 1);

24 setTag(dev, sizeof(struct net_device), oxf, 0);

25 setTag(priv, sizeof(struct stmmac_priv), oxf, 1);

27 return NETDEV_TX_OK;

28)

29

30 void dwmac_enable_dma_transmission

31 (void __iomem *ioaddr)
32 {

33 checkBound(ioaddr + DMA_XMT_POLL_DEMAND);

34 writel(1, ioaddr + DMA_XMT_POLL_DEMAND);

35 return;

36)

Listing 1: An example of the execution code using SriTAG
APIs

sections defined by the synchronization mechanism. Also, in order
to handle the case when multiple threads are working with one
kernel extension at the same time, we assign a separate extension
stack for each thread. In specific, SF1TAG allocates the extension
stack in the thread local storage of each thread. And, when the
thread invokes the extension function, SFITAG wrapper makes the
stack pointer point to its extension stack. After the function is over,
the stack pointer is changed to point to the original interrupt stack.
We disable the nested interrupt feature to prevent that the execution
stack is corrupted by executing multiple extensions in one thread
simultaneously.

7 EVALUATION

We conduct all experiments on the ODROID-C4 [5] development
board with four 2.0GHz quad-core ARMv8-A based Cortex-A55
processors and 4GB RAM. We use 64-bit Ubuntu 20.04 Linux with
kernel version 4.9.236 as an OS. All instrumentations are applied
using the LLVM 9.0 compiler framework [18].

7.1 MTE-Analogue

At the time of writing, there has been no line of ARM processors
that are equipped with MTE. We verified the functional correctness
of SFITAG by implementing a prototype on ARM Fast Models [2],
a software emulator including MTE. However, the emulator does
not provide cycle-accurate execution. Thus, to estimate the per-
formance overhead introduced by using MTE, we have devised

SFITAG: Efficient Software Fault Isolation with Memory Tagging for ARM Kernel Extensions

1 mov Xn, XZR
2 bfxil Xpsp, Xeo #0, #38 ; memory offset masking
3 movk X, #tag mem0, Isl #0

4 movk X, #tag mem1, Isl#16

5 movk X, #tag mem2, Isl#32

6 movk X, #tag mem3, Isl #48

7 add X, 2o s Isr #4

8 ldr Xrsv, [Xe,#8] ; tag load

9 str Xsrer [Xrsv, #8]

Figure 5: Tag Load Instrumentation. X, is the reserved register for
memory address with fixed tag, and X; is a register for tag memory
address

Table 2: Code instrumentation overhead

Drivers wrappers ~ MI CFI Xrso A codesize
nullnet 356 100 22 0 546
stmicro 8809 4574 455 3 13841
nullblk 694 374 36 0 1176

MTE-analogue. Most of the performance overhead in MTE comes
from (1) memory tagging operation and (2) tag checking operation.
Therefore, we mimic these two types of operations in software
to estimate the MTE overhead. Therefore, we first prepare a re-
served memory region in the kernel address space to emulate the
tag memory and estimate tagging overheads by executing substi-
tutive memory instructions that write single bytes to the reserved
memory. Next, we emulate MTE instruction which includes loading
and comparing tags. Fortunately, the tag comparing operation is
performed by separate hardware logic that runs concurrently with
the CPU core, resulting in negligible overhead [4]. To estimate tag
loading overhead, SFITAG inserts an extra load instruction before
every load and store, it performs comparing the pointer tag value
with the target memory in 16-byte granularity. As a result, SFITAG
enables to emulate the precise mode which supports immediate
detection of tag mismatch.

7.2 Code Instrumentation Overhead

To measure such impact on code size, we collect the following
statistics from the execution code, as seen in Table 2. MI shows
the number of bitfield move instructions before every memory
instruction in the extension. Note that, in MI, we do not include
instructions described in MTE-analogue since these instructions
are not required in the MTE-enabled platform. CFI denotes the total
number of added instructions to every indirect jump. X5, shows
the code size overhead when one general-purpose register is not
used in the extension. As a result, code size shows the code size
overhead when SFITAG is applied to the extension. Note that, in
this case, we do not include the code size for wrapper functions
since it can vary according to the developers. Instead, we count the
number of wrapper functions (i.e., K2E and E2K wrappers) for each
extension, as shown in wrappers in Table 2.

7.3 Load Time Overhead

As explained in § 6.3, when loading an extension, SFITAG performs
memory tagging operations to bring valid isolation of the extension
at runtime. Although the number of tagging operations would
differ from extensions and how SFiTac APIs are applied, under our
experimental setting, the one that most affects the performance is

477

ASIA CCS ’23, July 10-14, 2023, Melbourne, VIC, Australia

Table 3: Cost of domain crossing for SFiTAG

Micro operations Xpgy setting stack switching setTag checkTag

Cycles 130 122 82 202

3000
2500
2000
1500
1000

500

- B -setTag checkTag

Cycles

16 192 384 576 768 960 11521344 1536

Figure 6: Tag overhead according to the size of object (Bytes)

the tagging operations for the extension stack (8KB). Nevertheless,
the loading time is slowed down to less than 0.1s in all extensions
we used in the evaluation.

7.4

To analyze the performance impact of SFITAG in detail, we measure
the cycles separately which are measured by using perf_event_open
system call to read PMU event counters. Specifically, the system call
is configured to count hardware CPU cycles by setting HN_CPU_CYCLES
attribute. All reported cycles are averaged over 100,000 runs. Ta-
ble 3 shows the minimum cost of micro-operations that should be
performed each time domain crossing occurs. X,y setting is the op-
eration performed to ensure that a dedicated register always holds
the specified pointer tag, which takes 130 cycles. Stack switching is
always performed in the function prologue and epilogue, and rep-
resents the cost of the kernel and each extension stack transitions.
Since the MTE assigns or checks the tag at 16-byte granularity, set-
Tag and checkTag show the number of cycles about the tag granule.
setTag is the operation that assigns a tag to a memory location by
adding 4 bits of metadata to every 16 bytes of physical memory,
taking a total of 82 cycles. checkTag takes 202 cycles because it
loads the corresponding memory tag from dummy tag memory
and performs the tag comparison before each memory access. As
shown in Figure 6, setTag and checkTag indicate that cycles increase
linearly with the size of the shared object. Fortunately, it can be op-
timized by tagging only the fields of the structure that are actually
shared with the API provided by SriTAG, and our experiments have
confirmed that performance is not significantly affected, as will be
explained later.

Micro Operations Overhead

7.5 Device Drivers

To evaluate SFITAG, we instrument three device drivers in the Linux
kernel to be isolated. We choose the network and block device
drivers since they utilize kernel subsystems with the tightest per-
formance budgets. nullnet and nullblk emulate infinitely fast
devices in software. While they fail to fully reflect the complex
nature of real device drivers due to the lack of hardware device
related interfaces, their simplicity allows us to stress the default
overheads (e.g., SFI overhead, wrapper overhead, tag-related oper-
ations overhead) of SF1TAG without any artificial hardware limits.
On the other hand, stmicro driver allows us to explore several

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

% 14000 DOnative @SFITAG

12000
10000

8000
6000
4000 I
2000
; [
1 2 3 4

Number of threads

Tx Bandwidth (Mbp:

Figure 7: Performance of the nullnet driver

optimization techniques for SF1TAG when applied to real-world dri-
vers due to its complex interfaces for the kernel and the hardware
device.

7.5.1 Dummy Network Driver (nullnet). We employ the nullnet
device driver as a representative example, which represents an in-
finitely fast device and is accessed through a highly optimized I/O
submission path in the kernel network stack. We use the iperf3
benchmark, a network traffic tool for measuring transmit and
receive bandwidth for different payload sizes. We configure the
nullnet driver with a varying number of threads from 1 to 4, and
report the UDP transmit bandwidth on the maximum transmission
unit size packets averaged across ten runs. In our experiments, we
configure nullnet to annotate objects specific to its use rather
than leveraging the depth parameter in our provided APIs. While
depth parameter provides simple mechanism to tag subobjects in
a comprehensive way when it is difficult to track down numerous
subobjects to annotate them respectively, we observe that nullnet
only consists of few lines of code that merely updates several statis-
tic related fields of objects, allowing us to annotate each of the
specific use-cases of objects within the nullnet driver. This config-
uration allows us to analyze the isolation overheads of SFITAG in the
ideal scenario where no instructions are wasted to tag (and un-tag)
unused subobjects. Figure 7 shows the results. With one application
thread, the non-isolated driver (native) achieves 3281 Mbps. The
SFITAG-based isolated driver (SFITAG) achieves 2880 Mbps (87.7% of
the native performance). Performance scales linearly as we increase
the number of threads for all drivers: SF1TAG-based isolated drivers
achieve on average 87.69% of the native driver across 1-4 threads.

7.5.2 Stmicro Network Driver. We use an iperf3 test for TCP trans-
mit and receive bandwidth, varying the number of iperf threads
ranging from 1 to 4 (Figure 8). We configure SFITAG to run sev-
eral configurations to highlight performance gain from different
optimizations that SFITAG provides: 1) SFITAG-naive: the driver is
annotated with a maximum number of dereferences for every root
object utilized within a driver function. If the maximum number
of dereferences (depth) of an object is 4, every sub-object accessed
through 1 to 4 dereferences of root object (with a depth of 1 to 4) is
tagged regardless of its actual use case. As explained in § 6, this ap-
proach of implementation illustrates simple, one-lined annotations
for root objects without having to go through the whole function
to track down sub-objects. 2) SFITAG-optI: the driver is annotated
specifically, going through the functions and only annotating the
sub-objects in use by the driver. 3) SFITAG-0pt2: the annotations re-
lated to driver private objects are removed. This optimization comes
from our observation that these objects must always be accessible
by the driver (i.e., not requiring changes in access permission at
runtime) and are allocated by the driver functions during initial-
ization. With such characteristics, after being tagged on the initial

478

Seo et al.

Hnative WSFITAG_naive GSFITAG_optl BISFITAG_opt2 MSFITAG

Tx Bandwidth (Mbps)

7
7
7
7
7
7
7
7
7
7
%
4

Rx Bandwidth (Mbps)

1 2 3 4
Number of threads

Figure 8: stmicro network driver Tx/Rx bandwidth
250 Onative @ SFITAG

200

(e mn M0

Number of threads

10PS (K)

Figure 9: nullblk driver for packet size of 512B

allocation, driver private objects can avoid excessive (re)tagging
and untagging on its use. For example, driver private objects are
allocated to a private heap. 4) SFITAG: the driver is annotated with
full utilization of optimizations stated above. On SFITAG, a small
number of application threads saturates a 1Gbps network adapter.
For all experiments, we use the 64KB packet size to maximize the
domain crossing overhead. On the transmit path, the isolated device
driver before optimizations (SFITAG-naive) suffers from an average
of 5.6% degradation in throughput compared to the native driver. In
the case of SFrTAG-opt1 and SFITAG-0pt2, the throughput drops by
4.4% and 1.9%, respectively. When both optimizations are applied
(SFITAG), the isolated driver saturates the network interface, so it
causes about 1% drop in the throughput of native driver. On the
receive path, isolated drivers without optimizations (SFITAG-naive
record 3% lower performance than the native driver in terms of
throughput. In the case of SFrTaG-opt1 and SFITAG-0pt2, the through-
put drops by 1.9% and 1.1%, respectively. After both optimizations
are applied, there is a 0.8% performance degradation in throughput
compared to the native driver. According to our analysis, the rea-
son for more throughput reduction for transmit paths than receive
paths in our technique is that SF1TaG APIs (i.e., setTag and check-
Tag) are called more during the transmit path than the receive path.
In addition to throughput, we also measure CPU utilization when
packets are transmitted and received. When saturating a 1Gbps
network adapter for TCP connections, SFITAG consumes 12% ad-
ditional CPU usage which is the average of 16% for the transmit
path and 9% for the receive path. As described above, we need
more tagging operations for the transmit path than for the receive
path, and consequently, SF1TAG consumes more CPU cycles for the
former case than the latter. All in all, our experimental results give
us a general rule of thumb that the more tagging operations, the
higher CPU utilization as well as the lower throughput.

7.5.3 Null Block Device Driver (nullblk). Similar to the nullnet
driver, the nullblk does not interact with any real physical de-
vice(NVMe), thus, it is possible to emulate with pure-software.
Also, we can annotate each object specifically rather than using
the depth parameter for the same reason as the nullnet network
driver. In nullblk, I/O requests are generated using the fio bench-
mark. To evaluate our experiments, we set the optimal baseline by

SFITAG: Efficient Software Fault Isolation with Memory Tagging for ARM Kernel Extensions

configuring parameters that can provide the lowest latency path
to the extension. In addition, we vary the number of threads from
1 to 8 and used two block sizes, 512B and 1MB. Since the nullblk
driver does not communicate with the real hardware device, we
only employ read I/O requests. For the packet size of 512B and a
single thread, the native driver achieves 57K IOPS and for SFITAG it
achieves 52.6K IOPS, which is 92.28% of performance compared to
native (Figure 9). Also, the native driver with the packet size of IMB
has 7427 IOPS, whereas the Sr1TAG achieves 7141 IOPS, resulting
in 96.15% performance compared to the native driver (Figure 10).

7.6 Security Analysis

Data manipulation attacks. As noted in § 4, an adversary may
try to make any arbitrary access to the kernel data by exploiting
memory vulnerabilities in extensions. However, in SFITAG, none
of memory instructions within extensions can be used to achieve
this purpose. First, in the case of the memory instructions for the
main memory, SFITAG forces the upper 26-bits of memory target
address including the pointer tag to hold dedicated value, so these
instructions only can access the memory region with the same
memory tag value. In other words, the adversary cannot access ker-
nel data that holds a different memory tag value from the one for
the extension. Moreover, SFITAG does not allow the extension code
includes any special instructions that can assign or update memory
tag values. The adversary may exploit memory instructions for the
device memory. For this, SFITAG performs bounds-checking opera-
tions on the target memory address of these operations to prevent
to access main memory for device memory for other extensions.
Therefore, an attacker cannot perform data manipulation attacks
beyond the isolation boundary.

Control hijacking attacks. An adversary also can launch control
hijacking attacks while executing the extension code because the
adversary is capable of modifying code pointers dwelling in the
extension. However, even if the adversary manipulates the control
flow of the extension, only limited code gadgets within the exten-
sion can be exploitable since SFITAG only allows control transfers
to legitimate targets, such as function entries and basic block en-
tries in the extension code. Also, the adversary can try to invoke
wrapper functions of SFITAG runtime which are responsible for
security-critical operations such as memory tagging. To prevent
abuse of these wrappers, SFITAG prevents malicious jumps to the
middle of the wrapper function even if an attacker manipulates
the control flow of the extension. In addition, this enforcement
allows us to verify whether the arguments are benign or not by
putting this check code at the beginning of the function. For ex-
ample, SFITAG can check if the passed pointer argument actually
points to the memory region for the extension by confirming the
memory tag value. Additionally, during running extension code
and wrapper functions, SFIKE disables subsequent interrupts to
counteract attacks that maliciously trigger interrupts.

8 DISCUSSION

Limitation on the number of tags. As noticed earlier, ARM MTE
provides just four unused bits to form the tag section, implying that
SFITAG in principle is only allowed to have at maximum 14 isolated
extensions assigned distinct tags, in addition to two remaining tags

479

ASIA CCS ’23, July 10-14, 2023, Melbourne, VIC, Australia

30000 O native @SFITAG

25000

20000
15000
10000 .
5000
S [
1 2 3 4

Number of threads

Figure 10: nullblk driver for packet size of 1IMB

10PS (K)

reserved. This means that if we try to isolate one more extension
here, we have no more free tags left for the extension. A naive design
that we can consider to handle this tag shortage problem would be
assigning a newly installed extension the same tag already given
to running extensions. Although this may solve the problem, it
can cause a security loophole that allows a misbehaving extension
to make arbitrary access to others assigned the same tag. As a
quick remedy, we may reduce the loophole by following the design
suggested by BGI [9] where mutually trusted extensions, such as
those made by the same manufacturer, are placed into one domain,
which effectively saves the use of tags by sharing one tag among
multiple extensions in a safer way. An alternative design that we
may consider is to opt for a hybrid approach where we combine
Sr1TAG and BGI. In this design, we basically use the BGI scheme for
kernel isolation because it enables us to isolate as many extensions
as we need to. However, as described in § 2, BGI cannot prevent
the read access to the kernel, so we may apply SFITAG to security
critical extensions (up to 13) and BGI to the others. SF1TAG and BGI
can work independently in the system at the same time because
both the schemes operate respectively on separate data structures,
the pointer tags and ACL.

Limitation on minimum alignment granularity. When having
kernel objects allocated for isolated extensions, SFITAG should pay
special attention to a case where the size of an object for tagging
is smaller than Tag Granule, 16-bytes. Since MTE provides a tag
for each 16-byte granule in the physical address space, memory
objects smaller than 16 bytes will receive the same tag value if
they both fit inside the same granule. A simple cure for this would
be aligning small objects to 16 bytes. But, this is impractical in
that the kernel code must be modified and compiled every time an
extension is added. Alternatively, we handle this case by selectively
enforcing bounds checking when accessing certain objects. In our
method, SFITAG allows a developer to select and annotate a specific
object for bound checking. Later, just before the object is accessed,
SFITAG checks if the access falls within the legal bounds. From
our experiments, we have observed that this method is a practical
solution for implementing fine-grained isolation of small objects of
any size.

9 CONCLUSION

SFITAG seeks the memory tagging hardware support to deliver
boosts in the performance of traditional software implementations
of SFI for kernel extension isolation on ARM. With the aid of ARM
MTE, isolated extensions are assigned different tag values from the
kernel, and all their accesses are checked dynamically by hardware
to prohibit illegal reads/writes to the memory regions belonging to
the core kernel as well as other isolated extensions with different
tag values. As evinced in our experiments, the MTE-supported
runtime access checks are done fast with low overhead, which helps

ASIA CCS °23, July 10-14, 2023, Melbourne, VIC, Australia

SFITAG to enhance the overall performance. As another advantage
of SFITAG, we have shown that our solution offers kernel isolation
with higher precision by providing finer-grained protection.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their constructive feed-
back. This work was supported by the BK21 FOUR program of the
Education and Research Program for Future ICT Pioneers, Seoul
National University in 2023, and Inter-University Semiconductor
Research Center (ISRC). Also, the research was supported by the
National Research Foundation of Korea (NRF) grant funded by the
Korea government (MSIT (Ministry of Science and ICT)) (No. NRF-
2022R1A4A1032361), Institute of Information & communications
Technology Planning & Evaluation (IITP) grant funded by the Ko-
rea government (MSIT) (No.2020-0-01840, Analysis on technique
of accessing and acquiring user data in smartphone). Finally, this
work was supported by the MSIT, Korea, under the Convergence
security core talent training business (Pusan National University)
support program (IITP-2023-2022-0-01201) supervised by the IITP,
and IITP grant funded by the Korea government (MSIT) (No.2021-0-
00724, RISC-V based Secure CPU Architecture Design for Embedded
System Malware Detection and Response).

REFERENCES

[1] 2001 (accessed May 20, 2021). ARM domain access control.
//developer.arm.com/documentation/ddi0198/e/memory-management-
unit/domain-access-control

[2] 2019 (accessed January 12, 2021). Fast Models. https://developer.arm.com/tools-
and-software/simulation-models/fast-models

[3] 2019 (accessed January 12, 2021). Linux Kernel : Security Vulnerabilities Published
In 2019. https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-
47/year-2019/Linux-Linux-Kernel html

[4] 2019 (accessed January 12, 2021). Memory Tagging Extension: Enhanc-
ing memory safety through architecture. https://developer.arm.com/-
/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_
Extension_Whitepaper.pdf

[5] 2019 (accessed January 12, 2021). ODROID C4. https://www.odroid.co.uk/index.
php?route=product/product&product_id=1027

[6] Godmar Back and Wilson C Hsieh. 2005. The kaffeos java runtime system. ACM
Transactions on Programming Languages and Systems (TOPLAS) 27, 4 (2005),
583-630.

[7] Silas Boyd-Wickizer and Nickolai Zeldovich. 2010. Tolerating Malicious Device
Drivers in Linux.. In USENIX annual technical conference. Boston.

[8] Shakeel Butt, Vinod Ganapathy, Michael M Swift, and Chih-Cheng Chang. 2009.
Protecting commodity operating system kernels from vulnerable device drivers.
In 2009 Annual Computer Security Applications Conference. IEEE, 301-310.

[9] Miguel Castro, Manuel Costa, Jean-Philippe Martin, Marcus Peinado, Periklis

Akritidis, Austin Donnelly, Paul Barham, and Richard Black. 2009. Fast byte-

granularity software fault isolation. In Proceedings of the ACM SIGOPS 22nd

symposium on Operating systems principles. 45-58.

Haogang Chen, Yandong Mao, Xi Wang, Dong Zhou, Nickolai Zeldovich, and

M Frans Kaashoek. 2011. Linux kernel vulnerabilities: State-of-the-art defenses

and open problems. In Proceedings of the Second Asia-Pacific Workshop on Systems.

1-5.

Ulfar Erlingsson, Martin Abadi, Michael Vrable, Mihai Budiu, and George C

Necula. 2006. XFI: Software guards for system address spaces. In Proceedings of

the 7th symposium on Operating systems design and implementation. 75-88.

[12] Keir Fraser, Steven Hand, Rolf Neugebauer, Ian Pratt, Andrew Warfield, Mark
Williamson, et al. 2004. Safe hardware access with the Xen virtual machine
monitor. In 1st Workshop on Operating System and Architectural Support for the
on demand IT InfraStructure (OASIS). Boston, USA;, 1-1.

[13] Yongzhe Huang, Vikram Narayanan, David Detweiler, Kaiming Huang, Gang Tan,

Trent Jaeger, and Anton Burtsev. 2022. {KSplit}: Automating Device Driver Isola-

tion. In 16th USENIX Symposium on Operating Systems Design and Implementation

(OSDI 22). 613-631.

Galen C Hunt and James R Larus. 2007. Singularity: rethinking the software

stack. ACM SIGOPS Operating Systems Review 41, 2 (2007), 37-49.

https:

[10

[11

[14

480

[15

[16

[17

[18

=
2

[20

[21

[22

[23

[24

[25

[28

[29

[30

w
—

(32]

[33

[34

@
2

Seo et al.

Kyriakos K Ispoglou, Bader AlBassam, Trent Jaeger, and Mathias Payer. 2018.
Block oriented programming: Automating data-only attacks. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security.
1868-1882.

Koen Koning, Xi Chen, Herbert Bos, Cristiano Giuffrida, and Elias Athanasopou-
los. 2017. No need to hide: Protecting safe regions on commodity hardware. In
Proceedings of the Twelfth European Conference on Computer Systems. 437-452.
Igor Korkin. 2018. Divide et Impera: MemoryRanger Runs Drivers in Isolated
Kernel Spaces. arXiv preprint arXiv:1812.09920 (2018).

Chris Lattner and Vikram Adve. 2004. LLVM: A compilation framework for
lifelong program analysis & transformation. In International Symposium on Code
Generation and Optimization, 2004. CGO 2004. IEEE, 75-86.

Valentin JM Manés, Daehee Jang, Chanho Ryu, and Brent Byunghoon Kang. 2018.
Domain Isolated Kernel: A lightweight sandbox for untrusted kernel extensions.
computers & security 74 (2018), 130-143.

Yandong Mao, Haogang Chen, Dong Zhou, Xi Wang, Nickolai Zeldovich, and
M Frans Kaashoek. 2011. Software fault isolation with API integrity and multi-
principal modules. In Proceedings of the Twenty-Third ACM Symposium on Oper-
ating Systems Principles. 115-128.

Vikram Narayanan, Abhiram Balasubramanian, Charlie Jacobsen, Sarah Spall,
Scott Bauer, Michael Quigley, Aftab Hussain, Abdullah Younis, Junjie Shen,
Moinak Bhattacharyya, et al. 2019. LXDs: Towards isolation of kernel sub-
systems. In 2019 { USENIX} Annual Technical Conference ({ USENIX} { ATC} 19).
269-284.

Vikram Narayanan, Tianjiao Huang, David Detweiler, Dan Appel, Zhaofeng Li,
Gerd Zellweger, and Anton Burtsev. 2020. RedLeaf: Isolation and Communication
in a Safe Operating System. In 14th { USENIX} Symposium on Operating Systems
Design and Implementation ({ OSDI} 20). 21-39.

Vikram Narayanan, Yongzhe Huang, Gang Tan, Trent Jaeger, and Anton Burtsev.
2020. Lightweight kernel isolation with virtualization and VM functions. In
Proceedings of the 16th ACM SIGPLAN/SIGOPS International Conference on Virtual
Execution Environments. 157-171.

Olatunji Ruwase, Michael A Kozuch, Phillip B Gibbons, and Todd C Mowry. 2014.
Guardrail: A high fidelity approach to protecting hardware devices from buggy
drivers. ACM SIGPLAN Notices 49, 4 (2014), 655-670.

Leonid Ryzhyk, Peter Chubb, Thor Kuz, and Gernot Heiser. 2009. Dingo: Taming
device drivers. In Proceedings of the 4th ACM European conference on Computer
systems. 275-288.

Leonid Ryzhyk, Peter Chubb, IThor Kuz, Etienne Le Sueur, and Gernot Heiser.
2009. Automatic device driver synthesis with Termite. In Proceedings of the ACM
SIGOPS 22nd symposium on Operating systems principles. 73-86.

Chengyu Song, Hyungon Moon, Monjur Alam, Insu Yun, Byoungyoung Lee,
Taesoo Kim, Wenke Lee, and Yunheung Paek. 2016. HDFI: Hardware-assisted
data-flow isolation. In 2016 IEEE Symposium on Security and Privacy (SP). IEEE,
1-17.

Yifeng Sun and Tzi-cker Chiueh. 2013. SIDE: Isolated and efficient execution of
unmodified device drivers. In 2013 43rd Annual IEEE/IFIP International Conference
on Dependable Systems and Networks (DSN). IEEE, 1-12.

Michael M Swift, Brian N Bershad, and Henry M Levy. 2003. Improving the
reliability of commodity operating systems. In Proceedings of the nineteenth ACM
symposium on Operating systems principles. 207-222.

Robert Wahbe, Steven Lucco, Thomas E Anderson, and Susan L Graham. 1993.
Efficient software-based fault isolation. In Proceedings of the fourteenth ACM
symposium on Operating systems principles. 203-216.

Robert NM Watson, Jonathan Woodruff, Peter G Neumann, Simon W Moore,
Jonathan Anderson, David Chisnall, Nirav Dave, Brooks Davis, Khilan Gudka,
Ben Laurie, et al. 2015. Cheri: A hybrid capability-system architecture for scalable
software compartmentalization. In 2015 IEEE Symposium on Security and Privacy.
IEEE, 20-37.

Wei Wu, Yueqi Chen, Jun Xu, Xinyu Xing, Xiaorui Gong, and Wei Zou. 2018.
{FUZE}: Towards facilitating exploit generation for kernel use-after-free vulner-
abilities. In 27th { USENIX} Security Symposium ({ USENIX} Security 18). 781-797.
Bennet Yee, David Sehr, Gregory Dardyk, J Bradley Chen, Robert Muth, Tavis
Ormandy, Shiki Okasaka, Neha Narula, and Nicholas Fullagar. 2009. Native client:
A sandbox for portable, untrusted x86 native code. In 2009 30th IEEE Symposium
on Security and Privacy. IEEE, 79-93.

Nickolai Zeldovich, Hari Kannan, Michael Dalton, and Christos Kozyrakis. 2008.
Hardware Enforcement of Application Security Policies Using Tagged Memory..
In OSDI, Vol. 8. 225-240.

Yajin Zhou, Xiaoguang Wang, Yue Chen, and Zhi Wang. 2014. Armlock:
Hardware-based fault isolation for arm. In Proceedings of the 2014 ACM SIGSAC
conference on computer and communications security. 558-569.

https://developer.arm.com/documentation/ddi0198/e/memory-management-unit/domain-access-control
https://developer.arm.com/documentation/ddi0198/e/memory-management-unit/domain-access-control
https://developer.arm.com/documentation/ddi0198/e/memory-management-unit/domain-access-control
https://developer.arm.com/tools-and-software/simulation-models/fast-models
https://developer.arm.com/tools-and-software/simulation-models/fast-models
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/year-2019/Linux-Linux-Kernel.html
https://www.cvedetails.com/vulnerability-list/vendor_id-33/product_id-47/year-2019/Linux-Linux-Kernel.html
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://developer.arm.com/-/media/Arm%20Developer%20Community/PDF/Arm_Memory_Tagging_Extension_Whitepaper.pdf
https://www.odroid.co.uk/index.php?route=product/product&product_id=1027
https://www.odroid.co.uk/index.php?route=product/product&product_id=1027

	Abstract
	1 Introduction
	2 Related Work
	2.1 Page Table Switching

	3 Background
	4 Threat Model
	5 Sfitag Design
	5.1 Design Requirements
	5.2 Overview
	5.3 MTE-supported Memory Isolation
	5.4 Extension Stack Isolation
	5.5 MMIO Access Control
	5.6 MTE-based Control Flow Isolation

	6 Implementation
	6.1 Sfitag Runtime
	6.2 Sfitag Compiler
	6.3 Extension Loading Procedure
	6.4 Sfitag Verifier
	6.5 Multithreading Support

	7 Evaluation
	7.1 MTE-Analogue
	7.2 Code Instrumentation Overhead
	7.3 Load Time Overhead
	7.4 Micro Operations Overhead
	7.5 Device Drivers
	7.6 Security Analysis

	8 Discussion
	9 Conclusion
	Acknowledgments
	References

