
Received 21 October 2023, accepted 15 November 2023, date of publication 18 December 2023,
date of current version 12 January 2024.

Digital Object Identifier 10.1109/ACCESS.2023.3343777

Enhancing a Lock-and-Key Scheme With
MTE to Mitigate Use-After-Frees
INYOUNG BANG 1, MARTIN KAYONDO 1, JUNSEUNG YOU 1, DONGHYUN KWON 2,
YEONGPIL CHO 3, AND YUNHEUNG PAEK 1, (Member, IEEE)
1Department of Electrical and Computer Engineering, Inter-University Semiconductor Research Center, Seoul National University, Seoul 08826, South Korea
2School of Computer Science and Engineering, Pusan National University, Busan 46241, South Korea
3Department of Computer Science, Hanyang University, Seoul 04763, South Korea

Corresponding authors: Yeongpil Cho (ypcho@hanyang.ac.kr) and Yunheung Paek (ypaek@snu.ac.kr)

This work was supported in part by the BK21 FOUR Program of the Education and Research Program for Future ICT Pioneers, Seoul
National University in 2023; in part by the Institute of Information and Communications Technology Planning and Evaluation (IITP) Grant
funded by the Korea Government (MSIT) (RISC-V based Secure CPU Architecture Design for Embedded System Malware Detection and
Response) under Grant 2021-0-00724; in part by the Institute of Information and Communications Technology Planning and Evaluation
(IITP) Grant funded by the Korea Government (MSIT) (Analysis on Technique of Accessing and Acquiring User Data in Smartphone) under
Grant 2020-0-01840; and in part by the National Research Foundation of Korea (NRF) Grant funded by the Korea Government (MSIT) under
Grant RS-2023-00277326 and Grant NRF-2022R1A4A1032361.

ABSTRACT Preventing Use-After-Free (UAF) bugs is crucial to ensure temporal memory safety. Against UAF
attacks, much research has adopted a well-known approach, lock-and-key, in which unique, disposable locks
and keys are first assigned respectively to objects and pointers, and then on every memory access, checked for
a match. Attention has been drawn again to this approach by recent work that capitalizes on a vast abundance
of virtual address (VA) space in the lock assignment, thus being able to prevent UAFs in stripped binary.
However, as this VA-based lock-and-key scheme tends to rapidly consume virtual space, it is likely to suffer
from high performance overhead. In this paper, we propose a new scheme, called the VA tagging, whose goal
is to tackle this performance problem with the support of theMemory Tagging Architecture (MTA) introduced
in several commodity processors. In our scheme, the original VA-based locks are augmented with tags of
MTA. As a VA-based lock can be assigned to multiple objects with different tags, the same VA is reused for
many objects without compromising temporal safety. We have observed in our experiments that this tagging
scheme lowers the VA consumption rate drastically by one order of magnitude. We implement a light-weight
memory allocator, Vatalloc, by modifying existing allocators, dlmalloc and jemalloc, to employ the VA tagging
scheme for efficient prevention of UAFs. Our evaluation shows that Vatalloc with allocator modifications only
incurs 1.70 % (on dlmalloc) and 3.05 % (on jemalloc) of runtime overhead without considering performance
degradation of MTE. As a result of simulating the tagging architecture assuming the worst-case, postulating
MTE precise trapping mode incurs performance overhead of 30.9 % based on dlmalloc, and 25.5 % based on
jemalloc. If imprecisemode is assumed, the slowdown ismeasured 16.9% for dlmalloc and 12.0% for jemalloc
respectively. Vatalloc only incurs 19.0 % and 3.0 % memory overhead for dlmalloc and jemalloc respectively.

INDEX TERMS Memory safety, temporal safety, hardware, security, memory management, tagging
architecture.

I. INTRODUCTION
Dangling pointers refer to the pointers whose referent objects
have been freed. These pointers are common in C/C++, and
they themselves do not pose a threat to a program. However,
dereferencing dangling pointers introduces susceptibilities

The associate editor coordinating the review of this manuscript and

approving it for publication was Yang Liu .

to Use-After-Free (UAF) bugs, which may lead to arbitrary
memory access and control flow hijacking. UAFs are prevalent
across applications, as demonstrated in the statistical report of
the MITRE where it ranks among the top 25 most dangerous
software errors [1]. To date, a lot of techniques [2], [3],
[4], [5], [6], [7], [8], [9], [10], [11], [12], [13], [14], [15],
[16], [17] have been invented to stymie UAF attacks in
question.

5462

 2023 The Authors. This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License.

For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/ VOLUME 12, 2024

https://orcid.org/0000-0003-3042-3023
https://orcid.org/0009-0003-7340-6968
https://orcid.org/0000-0003-1539-229X
https://orcid.org/0000-0002-7507-3111
https://orcid.org/0000-0001-7842-1719
https://orcid.org/0000-0002-6412-2926
https://orcid.org/0000-0001-7300-9215


I. Bang et al.: Enhancing a Lock-and-Key Scheme With MTE to Mitigate Use-After-Frees

Conventional techniques for preventing UAF bugs can
be broadly classified into two approaches: lock-and-key
and pointer nullification. The former has long been proven
effective by many studies [12], [13], [15]. In this approach,
UAF bugs are prevented by validating every memory access.
To be specific, locks and keys are first assigned to objects and
pointers respectively. Every pointer dereference is validated
by checking that the key held by a pointer matches the
lock held by its referent object. To prevent UAF attacks
that exploit dangling pointers, locks are invalidated as soon
as the corresponding objects are freed, rendering the keys
of associated dangling pointers outdated. In contrast, the
latter relies on compiler instrumentation [2], [3], [5], [11]
or garbage collection like solutions [8], [9], [10], [14].
Compiler based solutions require source code, which hampers
its general adoption in practice. Some of GC-based techniques
necessitate hardware modifications [8], [9] or entail runtime
overhead, despite being disguised by concurrency and
generous provisioning of compute and memory resources [18].
Earlier studies [12] assigned unique integers (typically

64-bit) to represent locks and keys. Unfortunately, the
integer-based representation has a critical downside that it
requires heavy data structures to manage the locks and keys
associated with objects and pointers. Techniques that use this
representation tend to suffer from high runtime overhead,
as they have to perform frequent load/store and matching
operations for each lock and key assigned during program
execution. As explained in Section VIII, due in part to the
high computational cost associated with locks and keys, the
research community has largely shifted towards the pointer
nullification approach stated above [3].
Most recently, however, Oscar [15], Dangzero [17] and

FFmalloc [16] proposed an innovative idea that can reduce
the computing cost of the lock-and-key approach, rendering
it more attractive to use. Whereas traditional lock-and-
key-based techniques have been plagued by excessive
runtime overhead resulting from managing and computing
integer locks/keys, the more recent approaches have moved
towards using virtual addresses (VAs) of objects/pointers to
represent locks/keys. In this scheme, unique, disposable locks
are implicitly generated throughout program execution by
assigning different VAs to all objects created in the program
in their VA-based representation. When an object is freed, the
VAs assigned to it are invalidated. In so doing, dereferencing
the dangling pointers that hold the invalidated VAs of the
freed object is trapped by a memory fault, leading to the
prevention of UAFs. However, the VA-based scheme comes
with an inherent drawback. The scheme requires that each VA
is allocated to objects only once to ensure the uniqueness of
locks, which negatively impacts the system and VAs will be
run out rapidly. As VAs should be discarded after a single use,
caching mechanisms of memory allocators to efficiently reuse
freed memory for near future allocation requests becomes
inapplicable. Also, it intensifies memory fragmentation
over time, ultimately causing performance and memory
overheads.

In this paper, we propose a lock-and-key scheme, called
the VA tagging, which effectively resolves scalability issues
associated with the current VA-based prevention scheme. Our
scheme significantly reducesVA exhaustionwhilemaintaining
efficient performance and minimal memory overhead. The
scheme leverages the Memory Tagging Extension (MTE),
a hardware feature that has been announced in the latest line
of ARM processors, ARMv8.5-A [19]. VA tagging scheme
augments the original VA-based locks with tags, and memory
accesses are allowed only when their tags match with the
aid of MTE. Specifically, during the allocation of a new
object, the object is assigned a VA along with a tag number,
and the associated pointer is also assigned the same tag.
When an object is freed, we do not simply invalidate its
VAs as in the original VA-based schemes; rather, we modify
its tag numbers. This alteration prevents UAF attacks in
subsequent dereferences of associated dangling pointers, due
to the disparity between the tag numbers assigned to the freed
objects and the dangling pointers. Unlike the conventional VA
based techniques, each VA can be assigned to objects as many
times as the number of available MTE tags, without losing
the prevention capability against UAF attacks. By doing so,
our scheme effectively alleviates the aforementioned issues
caused by single-use only VAs.
To evaluate the feasibility and effectiveness of our VA

tagging scheme, we have implemented a technique, called
Vatalloc, that provides light-weight prevention of UAF attacks.
It is noteworthy that our VA tagging scheme can be seamlessly
incorportated into any allocators. We have demonstrated
this by implementing Vatalloc in two popular allocators,
namely dlmalloc and jemalloc, which have distinct design
philosophies. With only 0.9K and 0.2K additional LoC
respectively, the VA tagging scheme is successfully applied
to both allocators.
The empirical results with SPEC2006 [20] and

PARSEC [21] benchmark suites clearly demonstrate the Vatal-
loc can mitigate UAF attacks with high efficiency in terms of
time and space. In short, Vatalloc with allocator modifications
only incurs 1.70 % (on dlmalloc) and 3.05 % (on jemalloc)
of runtime overhead, and 19.0 % (on dlmalloc) and 3.0 %
(on jemalloc) of memory overhead. To measure an accurate
estimation of worst case performance of MTE, we simulated
both tag update and tag matching. Vatalloc on dlmalloc and
jemalloc resulted in 16.9 % and 12.0 % slowdown, with 19.0
% and 3.0 % memory overhead respectively.

In summary, our contributions are:
• We propose a VA tagging scheme with MTE enables
light-weight and scalable prevention of UAF attacks
without source code of a target program.

• We have experimentally showed that Vatalloc can
be implemented on existing memory allocators with
minimal modification.

• We performed reasonable proxy measurements to
evaluate worst-case performance of Vatalloc despite the
absence of real hardware or cycle-accurate simulator.
We found that most of the overhead incurred is due only to

VOLUME 12, 2024 5463



I. Bang et al.: Enhancing a Lock-and-Key Scheme With MTE to Mitigate Use-After-Frees

FIGURE 1. Operation of MTE.

tag matching on memory accesses, and Vatalloc induces
insignificant degradation on performance and memory.

II. BACKGROUND
In this section, we provide background information on MTE,
the core hardware feature leveraged by Vatalloc, and twomajor
dynamic memory allocators, dlmalloc and jemalloc, to which
we applied Vatalloc for prototype implementation.

A. MEMORY TAGGING EXTENSION (MTE)
MTE follows the design of tagged memory architecture [22],
which aims to efficiently improve the security of the system.
This hardware feature has been introduced on the recent
ARMv8.5-A [23] architecture. As described in Figure 1, MTE
deploys two types of tags: pointer tags and memory tags
that are assigned to each pointer and each 16 B (or 32 B)
memory block. Pointer tags are attached to the top bits of
pointers and memory tags that are stored in a separate memory
storage. The pointer tag is implicitly propagated through
pointer arithmetic to other pointers that equally refer to the
object, thus all the associated pointers can be used to access
the object. Each tag is 4 bits large, therefore, its value ranges
from 0 to 15. When enabled, MTE checks every memory
access by comparing the tag numbers of the pointer and target
memory. If a mismatch occurs, MTE raises an exception
synchronously or asynchronously by configuration. Pointer
tags can be easily extracted from the value of pointers, and
similarly memory tags can be loaded with minimal latency by
preparing a dedicated cache memory for them or placing them
inside ECC bits beside the associated memory blocks.

MTE provides two operation modes: precise and imprecise.
The former introduces performance overhead, but supports
synchronous exception providing the faulting address, which
means that a tagmismatch is identified instantly upon an illegal
memory access. The latter operates fast, but exception is raised
asynchronously, meaning a tag mismatch is reported later after
an illegal memory access. In regards to this imprecise mode,
ARM features an option to release the delayed notification
upon entering the kernel so that the kernel can recognize
the occurrence of any tag mismatch. To enable programs
to be informed of the tag mismatch exception from MTE,
a recent Linux kernel [24] with a MTE support generates a
SIGSEGV signal when a tag mismatch occurs. The signal is
passed to programs along with a code, SEGV_MTESERR (i.e.,
synchronous error) at the precise mode or SEGV_MTEAERR
(i.e., asynchronous error) at the imprecise mode. Therefore,
it is possible that a program deal with tag mismatch of MTE
by writing its own signal handler.

B. DLMALLOC
dlmalloc [25] is a former primary dynamic memory allocator
of Linux and Android, and the base of ptmalloc [26] currently
used in Linux by default. Upon receipt of a memory allocation
request, dlmalloc internally captures a memory block, called
a chunk, and returns its address. Chunks are allocated from a
pool, called a segment, allocated by the kernel through srbk
and mmap system calls. Chunks are classified by size into
small and large groups, based on a defined threshold (by
default, 256 KB). Such a classification reflects the common
usage pattern for objects that varies by size: generally, small
objects are frequently allocated and have a short life-time,
but large objects are rarely allocated and have a long life-
time. Therefore, for a proper control of allocation overheads,
dlmalloc manages these two types of chunks in different
methods. Allocation/deallocation requests for large chunks
are page-aligned and directly handled by mmap and munmap,
which implies that dlmalloc does not reuse large chunks as its
memory pool. On the other hand, the requests for small chunks
are managed for effective reuse. On allocation, a request
size is aligned to a multiple of 16 (or 32) bytes on 64-bit
architecture. Dlmalloc then searches with a best-fit strategy
a free list (or tree in which freed small chunks have been
collected. Absence of a fitting free chunk results in dlmalloc
splitting the top chunk that is the topmost free chunk in
each segment as the final resort. On deallocation, dlmalloc
consolidates (or coalesces) the just freed chunk with adjacent
freed chunks to suppress external fragmentation. To facilitate
such management, dlmalloc augments each chunk with a
16-byte sized header that consists of several fields as described
in Figure 3. In addition, dlmalloc inserts node metadata into
freed chunks to maintain the free list without consuming
additional memory.

C. JEMALLOC
Jemalloc [27] is being used in Mozilla Firefox for the
Windows, Mac OS X and Linux platforms, and was adopted
as the default system allocator on the FreeBSD and NetBSD
operating systems. For better multithreading support, Jemalloc
relies on the concept of arenas, where a specific arena is
associated with particular execution threads to overcome
lock contention issues between threads. The arena serves
the required concurrency of the program and its number is
proportional to the number of available CPU cores. Jemalloc
categorizes the size of malloc requests into small, large and
huge. Requests less than 4KB are classified as small, those
less than 2MB as large, and the rest as huge. For small and
large allocations, bins are used to organize size classes of
chunks, and, in our case, for example, 35 size classes are
initialized a priori for each small and large allocations. Each
bin determines the size and the capacity of chunks in the
associated runs consisting of one or multiple pages. The
fundamental purpose of a run is to keep track of the allocation
state of chunks. It holds an indexed bitmap as a part of its
metadata, specifying whether the chunk is freed or in-use.

5464 VOLUME 12, 2024



I. Bang et al.: Enhancing a Lock-and-Key Scheme With MTE to Mitigate Use-After-Frees

When the malloc request for small or large is placed, a chunk
in a run corresponding to the request size is returned to user.
In contrast to dlmalloc, jemalloc does not release memory
even for huge chunks after deallocation. Instead, it reserves it
for later use. For this purpose, jemalloc organizes a separate
tree data structure to manage huge chunks.

III. THREAT MODEL AND PREREQUISITE
A. THREAT MODEL
We assume the threat model that is consistent with that of the
previous work discussed in Section VIII. A target program is
not malicious per se, but has dangling pointers. In this work,
we assume an adversary can only launch UAF attacks by
exploiting the dangling pointers. Defence techniques [28],
[29], [30] that are orthogonal and compatible to Vatalloc
are assumed to prevent different types of memory attacks
such as buffer overflow and type confusion so that the
adversary cannot exploit them to subvert or bypass Vatalloc
by compromising the integrity of its metadata and MTE’s
memory/pointer tags.

B. PREREQUISITE
Vatalloc is designed to operate at memory allocator-level.
To apply Vatalloc, therefore, a target program is required to use
explicit interfaces for memorymanagement, such as allocation,
deallocation, and reallocation.

IV. VA TAGGING SCHEME
We propose drop-in-use VA tagging scheme for efficient
prevention of UAF attacks. As described in Section I, the lock-
and-key approach prevents UAF attacks from a mismatch
between the lock of an object and the key of a pointer.
The performance overhead in this approach is attributed
to the expenses incurred in generating unique, disposable
locks upon object allocation, executing lock/key matching
during memory access, and invalidating these locks upon
object deallocation. In this context, our VA tagging scheme
significantly reduces the costs by cleverly leveraging both
VAs and MTE tags as locks, which leads to a reduction in
the assignment and management costs. Our proposed VA
tagging scheme leverages MTE tags to allow the reuse of
the same VA multiple times. It effectively alleviates heavy
kernel intervention for lock management, as opposed to the
original VA-based scheme [15].

Figure 2 illustrates how the VA tagging scheme effectively
prevents UAF attacks. Initially, when an object is allocated
by malloc, the random tag number is assigned to both
the memory chunk of the object and the returned pointer
(Figure 2.(a)). As explained in subsection II-A, the pointer
tag attached to the returned pointer is implicitly propagated
through pointer arithmetic to other pointers that equally refer
to the object, resulting in no extra overhead required to manage
it. The key point of our scheme is the incrementation of the
tag number assigned to an object upon deallocation. This tag
modification renders subsequent attempts to dereference the
dangling pointers for UAF attacks be caught due to the tag
mismatch (Figure 2.(b-c)).

FIGURE 2. UAF prevention based on the VA Tagging Scheme. For the sake
of simplicity, we assume that the tag numbers are initially assigned 0 and
subsequently increase until reaching 15.

In our VA tagging scheme, each tag number must be used
only once for the same chunk for safety. Therefore, we mark
the chunks with no assignable tag numbers as ‘‘exhausted’’ to
prevent them from being reused later. Unfortunately, these
exhausted chunks will lead to memory leak by taking up
physical page frames. To address this problem, we need to
keep track of the chunks in order to retrieve their frames
by unmapping them. However, we should note that most
exhausted chunks will be mixed with non-exhausted chunks
within a page. Therefore, to avoid a faulty unmapping, we have
to keep track of all exhausted chunks by page, and only unmap
the page which is completely filled with exhausted chunks.
Once a page is unmapped, dangling pointers referring to
somewhere in it become invalidated so that UAF attacks by
exploiting them will be prevented (Figure 2.(d)).

V. VATALLOC
For convenience, we name two versions of Vatalloc imple-
mented based on dlmalloc and jemalloc as Vatalloc-d and
Vatalloc-j, respectively. To demonstrate the effectiveness and
feasibility of the VA tagging scheme, we implement Vatalloc
that realizes the scheme on two real memory allocators,
dlmalloc and jemalloc. The two versions of Vatalloc are
designed to follow the original design philosophy found in
the base memory allocators. For example, dlmalloc, a free-list
allocator, is designed to minimize memory overhead, such
as by placing its metadata within free chunks. Therefore,
Vatalloc-d is designed to reduce memory consumption by
devising a relatively complicated but space efficient data
structure for its metadata. On the other hand, jemalloc,
a bucket allocator, was designed to improve performance
in exchange for consuming more memory. Accordingly,
Vatalloc-j is designed to reduce performance overhead by
using fast but not space-optimized data structure for its
metadata.
Vatalloc basically fits into C and C++, but is applicable

to other languages that provide dynamic memory allocation
interfaces as a form of operators or functions, such as new
and delete, or malloc and free. Vatalloc is employable
in applications either by overriding these functions at run time,
or linking against a library containing Vatalloc’s substituted
functions at loading time.

VOLUME 12, 2024 5465



I. Bang et al.: Enhancing a Lock-and-Key Scheme With MTE to Mitigate Use-After-Frees

FIGURE 3. Modified Chunk Metadata on Vatalloc-d. The gray field refers to
a free bits used as metadata.

A. TAG MANAGEMENT
Small chunks (chunks hereafter for short) are prepared for
small sized objects. To take advantage of the VA tagging
scheme, 4-bit MTE tag numbers must be assigned to the
chunks and updated whenever there are state transitions of
chunks: creation, free, and consolidation.
Upon spawning new chunks from the heap, Vatalloc

assigns a tag number to each. Subsequently, the tag numbers
are updated as follows: upon receiving free requests, the
corresponding chunk remains to service later allocation
requests efficiently and its tag number is incremented.
Concurrently, Vatalloc increases the tag number of the chunk
by 1. This prevents dereferencing of dangling pointers that
still hold an unchanged pointer tag that no longer matches,
thus preventing UAF attacks.

1) ON DLMALLOC
To implement Vatalloc-d, tag count for each chunk, which
refers to how many times the chunk is reused, is required to
be stored and tracked as Vatalloc assigns random value to
each chunk. It is stored in the chunk header, specifically in the
topmost 4-bit of the chunk_size field, which is the second
byte of the header. Figure 3 shows the modified chunk’s header.
By doing so, Vatalloc cleverly avoids performance overhead
by tag loading and memory consumption for tag management.
Since the chunk_size field must be accessed upon the state
transitions of chunks, Vatalloc minimizes memory operations
for accessing tag count in this way. This placement reduces the
chunk_size bit from 60 to 56, which is acceptable since
no objects are bigger than 248 bytes. To evenly distribute tag
numbers, initial value is randomized and stored in the topmost
4-bit of the prev_size field, which is the first byte of the
header. The actual value of the tag number is computed by
adding the tag count and the initial tag together.
When consolidating adjacent free chunks to minimize

fragmentation, tag management becomes crucial. In this
process, Dlmalloc checks if there are other free chunks
adjacent to the current one, and if so, it consolidate them
into one. However, if these chunks have different states, which
are initial values and tag counts, Vatalloc recomputes the tag
counts and initial value for consolidation. First, the minimal
initial value of the two chunks is assigned as the new initial
value. Second, the maximum tag count of the two chunks
is calculated and delta of the two initial values is added to
it and assigned as the new tag count. Although this method
preserves tag number consistency, it can lead to faster growth

FIGURE 4. Metadata of Vatalloc-j.

of tag counts, reducing the likelihood of reusing the same
virtual addresses. To address this concern, Vatalloc can enforce
a consolidation policy based on the recomputed tag count
if two adjacent chunks are consolidated. This policy allows
consolidation only if the degree of the tag count is equal to or
less than a defined threshold, and otherwise, Vatalloc leaves
the chunks separate until their tag numbers become close.
By default, Vatalloc sets the threshold to 15, which permits
any consolidation. We evaluate the performance of Vatalloc
for different thresholds in Section VI.

2) ON JEMALLOC
For proper tag management on jemalloc, we changed the
configurable tiniest chunk size of jemalloc from 8 to 16 bytes,
as memory can only be tagged with 16-bytes granularity
in MTE. In jemalloc, chunks are preallocated in a run,
an allocation pool, with segregated by their size, and are not
coalesced unlike dlmalloc. Therefore, as illustrated in Figure 4,
Vatallocmanages tag counts and initial vales by using a per-run
tag array whose elements correspond to the tag counts and
randomized initial value of each chunk.

B. EXHAUSTED CHUNKS
As chunks are reused repeatedly, their tag counts gradually
increase as in subsection V-A. When their tag counts reach
the maximum value (i.e., 15) and cannot be incremented on
deallocation anymore, Vatalloc label them as exhausted and
excludes from the allocation pools not to be considered in a
future reallocation. This exclusion is essential for Vatalloc to
maintain its UAF attack prevention capability by preventing
multiple objects from having the same VA and tag number.
However, it may increase memory overhead because the
exhausted chunks will keep occupying physical page frames.
Vatalloc relieves this issue by unmapping the pages where
exhausted chunks are residing, which will be explained
in subsection V-C.

1) ON DLMALLOC
To mark the chunk’s exhaustion state, Vatalloc-d modifies
chunk’s header again similar to the case of the tag number.

5466 VOLUME 12, 2024



I. Bang et al.: Enhancing a Lock-and-Key Scheme With MTE to Mitigate Use-After-Frees

FIGURE 5. A Problematic Placement of Page Exhaustion State Tree Nodes
on Vatalloc-d.

However, note that, as described in Figure 3, Vatalloc-d does
not mark the exhaustion state of each chunk in its own header.
Instead, a chunk’s exhaustion state is indicated in the header of
the previous and next chunks. This is to avoid a segmentation
fault that may occur during a consolidation process. For
example, when chunkA’s object is freed, dlmalloc needs to
visit chunkA’s adjacent chunks and identify their states to
make a consolidation. However, if any adjacent chunk was
exhausted and the page to which this chunk belongs has been
unmapped, a segmentation fault will be caused when visiting
it. Therefore, Vatalloc preemptively fends off this problem by
checking whether or not adjacent chunks have been exhausted
before visiting them. To do this, Vatalloc creates and refers
to a pair of state bits in the header: prev_exhausted and
next_exhausted. When a chunk is exhausted, Vatalloc
sets these state bits from the previous/next chunks.

2) ON JEMALLOC
As in the tag numbers, Vatalloc-j manages chunk’s exhaustion
state using an arraywithin a run, which is illustrated in Figure 4.
Since the per-run array is completely separated from chunks,
each element of the array directly presents the exhaustion state
of the associated chunkwithout worrying about a segmentation
fault from accessing unmapped chunks unlike the case of
dlmalloc. In jemalloc, freed chunks are cached for faster
reallocation in the future. Therefore, Vatalloc modifies the
jemalloc not to cache exhausted chunks.

C. PAGE-LEVEL EXHAUSTION TRACKING
Vatalloc needs to release page frames consisting of exhausted
chunks for efficient memory use. To do this, Vatalloc unmaps
the pages where exhausted chunks are residing. However,
we should note that those exhausted chunks are likely to
be mixed with non-exhausted chunks within the same pages.
Therefore, careless unmapping of the pages may result in a
crash. To prevent this problem, Vatalloc defines a new type of
page, called an exhausted page, that is full of only exhausted
chunks. Vatalloc can unmaps only this type of pages safely,
as they do not contain non-exhausted chunks.
The challenging issue here is that it is not feasible to

artificially group scattered exhausted chunks into exhausted

FIGURE 6. Two Types of Nodes of Page Exhaustion State Tree on Vatalloc-d.

pages since it will break the consistency of VA between chunks
and pointer.When a chunk becomes an exhausted one, Vatalloc
checks whether the page containing the chunk turns to be
exhausted ones, and if so, instantly unmaps it to release the
occupied physical page frame. To track down the generation
of exhausted pages, Vatalloc maintains metadata, called page
exhaustion state. Vatalloc keeps recording the accumulated
size of exhausted chunks by page in this metadata. Using this
metadata, Vatalloc can identify exhausted pages by finding the
ones whose accumulated size of exhausted chunks are equal
to the page size (i.e., 4096 with a 4 KB-paging scheme).
In the description so far, we assumed that Vatalloc

performs page exhaustion tracking by each page. This default
granularity allows Vatalloc to decrease memory overheads
the most by instantly unmapping exhausted pages as soon as
generated. However, a little performance degradation will
be caused due to frequent page management (i.e., calling
the munmap system call). Alternatively, we can increase the
granularity by performing page exhaustion tracking by a group
of pages. In this modified granularity, we may expect Vatalloc
to consumemore memory on exhausted pages due to a delayed
unmapping. Instead, the performance will be improved by
decreasing the frequency of pagemanagement.Wewill discuss
this trade-off of the tacking granularity in Section VI.

1) ON DLMALLOC
As stated earlier in this section, Vatalloc based on dlmalloc
seeks to minimize the memory overhead for metadata. For
this purpose, we maintain page exhaustion states as a binary
search tree because each tree node can be stored elaborately
in exhausted chunks without a separate allocation, as will
be explained below. In the tree, each node corresponds to
a page: key is a virtual page number (i.e., VA[48:12]) and
value is the accumulated size of exhausted chunks. We should
note that since the heap grows in one direction, the binary
search tree will be right skewed with new nodes possibly
having incremental keys, which will be slowed down to linear
complexity search time. Vatalloc avoids this problem by using
a red-black tree. As described in Figure 6.(a) the node of
the tree consists of color, parent/left/right pointers,
and value. key needs not be stored in the node because it’s
value (i.e., page number) can be easily computed with a shift
operation from the address of the node.
As stated ealier, Vatalloc creates tree nodes in exhausted

chunks without a separate memory allocation. However,
exhausted chunks for tree nodes are selected carefully, given
they are eventually unmapped along with the exhausted pages
to which they are belong. Therefore, Vatalloc basically creates

VOLUME 12, 2024 5467



I. Bang et al.: Enhancing a Lock-and-Key Scheme With MTE to Mitigate Use-After-Frees

a node of each page at the beginning bytes of the first exhausted
chunk within the page. If the exhausted chunk is larger than a
page, Vatalloc simply creates multiple nodes by page boundary.
For example, in Figure 5, Vatalloc creates three nodes inside
exhausted chunks for page 0, 1, and 2. In most cases, a node
whose encoding is depicted in Figure 6.(a) can be placed
in each chunk whose minimum size is 32-byte1 in dlmalloc.
However, we should consider a corner case described in
Figure 5 as well. Since in dlmalloc chunks are 16-byte aligned,
chunks (even the smallest) can span the page boundaries.
The problem is that a node of Figure 6.(a) is larger than the
alignment unit of a chunk. Therefore, in Figure 5 the node of
the page 0 is expected to overflow to the page 1. This causes
two problems. First, the node of the page 1 will be corrupted
by the node of the page 0. Second, if the page 1 is unmapped,
both nodes of page 0 will be damaged.
To avoid these problems, Vatalloc devises an auxiliary

encoding described in Figure 6.(b). With this encoding, the
size of nodes decreases to 16-byte that is identical to the
alignment unit of a chunk. We call these size-reduced nodes
half nodes, and original nodes full nodes. These two types
of nodes are distinguished by the type bit. In a half node,
we set the length of the right and left to 52 bits, which
is enough considering that (1) the size of the entire VA space
is usually 48 bits with 4-level paging, and (2) chunks are
well aligned at 16-byte boundaries (i.e., we can cut off the
bottom 4-bit in right and left). Furthermore, the size of
the value is 12 bits, enough to cover larger granularities of
the page-level exhaustion tracking considering that chunks are
allocated in units of 16-byte (i.e., we can cut off the bottom
4-bit in value). Lastly, we omit the parent in a half node
due to the limited size. It makes sense because unlike the
right and left, the parent can be re obtained anytime
by traversing from the root node of the tree. However, this
would slow down the tree management. Vatalloc alleviates
this problem by gradually converting half nodes to full nodes.
It is obvious that, in the page where a half node already exists,
another exhausted chunk that is large enough to store a full
node would be generated soon. In this case, Vatalloc migrates
the half node to the new exhausted chunk, while converting it
to a full node.

2) ON JEMALLOC
Jemalloc organizes allocation pools for chunks with memory
blocks of 2 MB. To keep track of the page exhaustion state,
Vatalloc-j creates an array indicating page exhaustion state by
each memory block as illustrated in Figure 4. For example,
if the default granularity (i.e., a page size) is used in tracking,
each element of the array corresponds to a page and stores
the accumulated size of exhausted chunks on the page. Once
the value of the array element reaches the granularity so
that the associated page is exhausted, Vatalloc unmaps the
corresponding memory.

1header (16-byte) + body (16-byte)

FIGURE 7. The memory layout of a Vatalloc-enabled program.

D. LARGE CHUNKS
As stated inSection II, dlmalloc and jemalloc handle
large-sized chunks in their own way. For example, dlmalloc
does not reuse large chunks. On the other hand, jemalloc
aggressively reuses even large chunks. Accordingly, Vatalloc
applies the VA tagging scheme differently to each allocator.

1) ON DLMALLOC
dlmalloc is designed to acquire memory for large chunks
from the kernel on the fly, instantly unmapping deallocated
large chunks. To abide by it, Vatalloc does not reuse VAs
of large chunks, but simply places large chunks at different
VAs. Since dlmalloc rely on mmap for large chunk allocations,
Vatalloc can implement it by making mmap allocate large
chunks in a way of monotonously increasing VA. More
specifically, Vatalloc (1) defines a break_large, which
corresponds to the break of the heap that is managed by
sbrk, (2) gives it to mmap along with the MAP_FIXED_
NOREPLACE flag to allocate a new large chunk in the VA
of the break_large value, and (3) adds the just allocated
size to the break_large value for moved allocation of next
large chunks. However, in this implementation, a large chunk
allocation can sometimes fail because the break_large
value may collide with the existing memory allocations, such
as for libraries, on different parts of the program other than
Vatalloc. In this case, dlmalloc resorts to a trial-and-error
method that repeatedly adjusts the break_large value until
mmap succeeds to allocate a large chunk. Admittedly, this
method may cause a poor worst-case overhead. To alleviate
this problem, Vatalloc introduces a memory layout that is
inspired from the conventional disposal of the heap and
stack to minimize the likelihood of a collision. As illustrated
in Figure 7, the address spaces of the small chunks and the
large chunks grow in the opposite direction. To sum up, the
address space of the large chunks ismanaged bymmapwith the
ever-decreasing break_large and that of the small chunks
by sbrk with the ever-increasing break.

2) ON JEMALLOC
Jemalloc organizes separate data structures and algorithms
for reusing large chunks. Therefore, Vatalloc-j applies the VA
tagging scheme so that the large chunks are reused unlike the
case in dlmalloc. Exactly speaking, as stated in subsection II-C,
jemalloc classifies non-small chunks again into large and
huge chunks. Firstly, for large chunks, as jemalloc manages
them no differently from the small ones, so that Vatalloc
applies the VA tagging scheme in the way described in the
previous subsections. On the other hand, jemalloc organizes

5468 VOLUME 12, 2024



I. Bang et al.: Enhancing a Lock-and-Key Scheme With MTE to Mitigate Use-After-Frees

single tree data structure for each huge chunks, since huge
allocations rarely happen. Vatalloc carries out tag operation
directly accessing internal tree structure, and unmaps huge
chunk on deallocation if it is exhausted.

E. MULTITHREADING SUPPORT
As Vatalloc complies with the original design direction of the
base memory allocators, it can provide multithreading support
equivalent to them.

1) ON DLMALLOC
dlmalloc is originally designed to suit single thread programs,
and its metadata are shared among threads. Therefore,
dlmalloc features simplistic multithreading support by
maintaining a global mutex lock for protecting its metadata.
Similarly, Vatalloc-d can support multithreading by protecting
its metadata using a global mutex lock. Since metadata such
as tag numbers and exhaustion states of chunks stored in
chunk headers are naturally protected by the existing lock
of dlmalloc, only one lock is additionally needed to protect
the page exhaustion state.

2) ON JEMALLOC
jemalloc has a specialized design for efficient multithreading
support that minimizes the need of a global mutex lock by
maintaining per-thread metadata. Likewise, Vatalloc places all
the metadata alongside the existing data structure of jemalloc,
and thus providing efficient multithreading support without
any addition of a global mutex lock.

F. OPERATION MODES AND DETECTION
MTE provides two operation modes: precise and imprecise,
as described in subsection II-A. Depending on the currently
activated MTE mode, Vatalloc can prevent Use-After-Free
(UAF) attacks either immediately (in the precise mode) or
lazily (in the imprecisemode). As explained in subsection II-A,
in precise mode, the tag mismatch is synchronously notified
with the faulting address, which allows for the exact
determination of the load or store instruction that caused the
tag mismatch. When a tag mismatch occurs, the kernel support
MTE to generate a SIGSEGV signal. To be specific, the signal
is raised instantly if the precise mode is enabled. The signal is
also accompanied by a code, SEGV_MTESERR or SEGV_
MTEAERR, to specify the current MTE mode. Therefore,
Vatalloc can write a custom SIGSEGV handler to detect
UAF attacks by catching the signal and code. This feature
allows Vatalloc to instantly detect UAF violations before any
dangling pointer is exploited by attackers. Thanks to this
MTE tag matching, Vatalloc has a relative advantage over
some other Virtual Address (VA)-based techniques, such as
FFmalloc, in that it has the capability for instant detection,
which they lack. On the other hand, in the situation where
high performance is required, imprecise mode can be chosen.
In this case, signal of violation is delayed and raised at the
upcoming entry to the kernel. In the event of a violation, the
signal of the violation is postponed and raised upon the next

entry into the kernel. However, it is unlikely that a violation
would lead to a serious compromise of the system, as it is
detected before it enters the kernel.

G. AGAINST VA EXHAUSTION
Despite Vatalloc’s efficient use of VAs and tags, an application
that never finishes may end up exhausting all the VA space. For
that case, like conventional GC, procedure of marking the
pair of VA and tag which is still referenced, and sweeping
the pair which is unmarked for safe reuse can be considered.
DangZero has shown this reclaiming routine effective with
the modified kernel. Like Oscar, DangZero requires at least
one page frame per object. Since Vatalloc does not have this
constraint and the same VA can be reused multiple times,
the frequency of reclaiming and the resulting performance
degradation is expected to be significantly lower.

VI. EVALUATION
In this section, we demonstrate the efficiency and effectiveness
of Vatalloc. We first evaluate two versions of Vatalloc
implemented on dlmalloc and jemalloc in terms of perfor-
mance and memory through a comparison with previous
techniques. We also show how the design configurations
declared in Section V affect Vatalloc. Lastly, we examine
the effectiveness of Vatalloc in UAF attack detection. In the
following evaluation, we evaluate performance and memory
overhead of Vatalloc operating in precise and imprecise mode
using emulation.

A. EXPERIMENTAL SETUP
To confirm the functional correctness, the implementation has
been carried out on ARM Fixed Virtual Platform v11.11.34.
However, as it is not cycle accurate, the implementation
on it cannot be used for performance measurement. To our
knowledge at the time of this research, there were no
publicly available processor supporting MTE. For example,
according to our investigation, even the Apple M2, which is
designed with up-to-date ARM architecture did not implement
MTE. Therefore, we instead conducted proxy measurements
on development board, ODROID-HC4 [31] with 1.8Ghz
Cortex-A55 quad core processor and 4GB RAM, by shadow-
mapping the tag memory. For DangZero, we referred to the
numbers that have been reported in their original papers as
their prototype only supports Intel architecture.

1) MODIFIED CODE SIZE
Vatalloc-d was built on dlmalloc-2.7 by adding 0.9K lines of
source code, and Vatalloc-j was implemented by adding 0.2K
lines to the source code upon jemalloc-4.5. Vatalloc can be
even implemented in FFmalloc for extension, to further reduce
the exhaustion of va space.

B. PROXY MEASUREMENT
To measure an accurate estimation of worst case performance
of MTE, both tag update, which is composed of loading
and storing tags, and tag matching have to be considered.

VOLUME 12, 2024 5469



I. Bang et al.: Enhancing a Lock-and-Key Scheme With MTE to Mitigate Use-After-Frees

FIGURE 8. Performance and Memory Overhead on SPEC CPU2006.

FIGURE 9. Performance Overhead on PARSEC. The blue bar refers to FFMalloc, the red bar refers to Vatalloc-d, and the black bar refers to Vatalloc-j.

While recent researches using MTE [32], [33] overlooked
the second cost, but from what we have observed, it adds
significant overhead to the system. First, we simulated
the update of memory tags by reserving a large memory
region to store tags and executing memory instructions,
which write a single byte to the reserved memory on every
load or store operation. The tag comparison overhead is
assumed to be mostly hidden since it is performed by
a separate MTE hardware logic which runs concurrently
with the CPU cores [19]. Meanwhile, tag loading has a
potential performance impact on systems in the precise
trapping mode. By loading additional tag bits, more memory
pressure and cache overhead are induced. Additionally, ARM’s
weak memory model will incur higher costs to ensure that
all the memory operations are observed after the tag is

loaded. We pessimistically approximate this effect of memory
dependency by instrumenting target programs in two-fold.
Firstly, in the instrumentation1, before every memory access,
loading a corresponding tag is performed using implicit
load-acquire barrier as seen in Figure 11.(b). However, loading
a tag from shadow memory to the cache and then to the
CPU requires computations of the tag address, which will
be transparently performed by the MTE unit. Also, extra
burden to the memory unit is incurred because MTE loads
tags from memory to caches but not from caches to CPU.
To compensate for this, in the instrumentation2, dummy
instructions that calculate the tag address and load the tag
are inserted before every memory access (Figure 11.(c)).
These instructions use constant addresses to ensure that cache
miss never occurs. By subtracting the runtime results of

5470 VOLUME 12, 2024



I. Bang et al.: Enhancing a Lock-and-Key Scheme With MTE to Mitigate Use-After-Frees

FIGURE 10. Memory Overhead on PARSEC. The blue bar refers to FFMalloc, the red bar refers to Vatalloc-d, and the black bar refers to Vatalloc-j.

FIGURE 11. Instrumentation for Proxy Measurement.

instrumentation1 from those of instrumentation2, we obtain
the tag loading overhead induced by fetching the memory tag
from memory into the cache and the runtime overhead caused
by the stricter memory ordering restraint. Likewise, to evaluate
performance of the imprecise mode, we instrumented target
programs (instrumentation3) and subtract the performance
results of instrumentation2 from those of instrumentation3.
Note here that in instrumentation2, a load instruction without
any forward dependency is inserted as in Figure 11.(d). As tag
checking operation is performed in MTE asynchronously,

C. PERFORMANCE OVERHEAD
Figure 8 reports the performance numbers of Vatalloc and
other techniques that are measured on SPEC2006 single-
threaded benchmarks. We used -O2 as a default optimization
flag, but we used -O1 for perlbench and dealII, and -O0
for gcc, omnetpp and namd as these benchmarks crashed

with instrumentation. For convenience, hereafter we refer
to measurement of Vatalloc postulating precise mode as
Vatalloc precise, and imprecise mode as Vatalloc imprecise
respectively. In some cases, such as gobmk, sjeng, and lbm,
uninstrumented Vatalloc is faster than the native execution;
we deem that this is due to the unintended effect from the
changes in the chunk layout. For the instrumented versions
to measure MTE’s negative potential impact on the system,
Vatalloc imprecise adds up 16.9 % runtime overhead for
Vatalloc-d and 12.0 % for Vatalloc-j, which provides nearly
similar performance to 18.9 % slowdown of MarkUs and 14 %
slowdown of DangZero without page reclaimer. Due to more
stringent constraints to measure the effect of precise MTE
mode, Vatalloc precise incurs larger runtime overhead (30.9 %
for Vatalloc-d and 25.5 % for Vatalloc-j). hmmer resulted
in the worst number for Vatalloc precise, but the number
is significantly dropped in Vatalloc imprecise. The worst
slowdown in Vatalloc imprecise is observed in perlbench.
Vatalloc-d (w/o MTE) and Vatalloc-j (w/o MTE) refer to

uninstrumented versions of Vatalloc-d and Vatalloc-j, where
performance degradation of MTE is not considered. Vatalloc-d
andVatalloc-j shows 1.70% and 3.05%geomean performance
overhead respectively, which means without adverse effect of
MTE, our mechanism induces merely negiligible overhead.
The measurement result indicates that in systems with MTE
for enhanced spatial safety, Vatalloc offers UAF prevention
with a slight overhead.

We also tested 12 multi-threaded PARSEC-3.0 workloads
to investigate multithreading performance, and compared
the results with those presented in DangSan. We measured
uninstrumented Vatalloc, Vatalloc precise and FFMalloc on

VOLUME 12, 2024 5471



I. Bang et al.: Enhancing a Lock-and-Key Scheme With MTE to Mitigate Use-After-Frees

FIGURE 12. Nginx throughput.

our system.We can observe that Vatalloc-d precise incurs high
overhead on average (geometric mean, 65.8 % at 64 threads).
Uninstrumented Vatalloc-d and Vatalloc-j precise introduces
36.8% performance overhead. On the other hand, Vatalloc-j
adds negligible overhead on average (8.5 % at 64 threads),
which shows that the multithreaded performance of jemalloc
is not degraded by Vatalloc. For Vatalloc-j precise, 36.7%
slowdown occurs.

D. MEMORY OVERHEAD
The memory overheads of Vatalloc mostly arises from
metadata and exhausted but not unmapped chunks. Firstly,
Vatalloc consumes different amount of memory for metadata.
Vatalloc-d does not require additional memory because all
its metadata are embedded in the existing metadata of live
or exhausted chunks. On the other hand, Vatalloc-j spends
some memory on storing metadata in the data structures of
jemalloc. In the worst case, Vatalloc-j uses less than 130 bytes
for every page, which roughly increases memory consumption
by 3.0 %.
Next, exhausted chunks are retained until unmapped

at page level when their total size accumulates to the
page size. To measure the relevant overhead, we used the
maximum resident set size reported in the processor status
(i.e., /proc/pid/status). We first observed that Vatalloc
adds up to 19.0 % of maximum resident memory on dlmalloc,
and 3.0 % on jemalloc with respect to SPEC. As reported
in Figure 8, we compared the peak memory usage of Vatalloc
with other techniques. Meanwhile, MarkUs and DangZero add
up 18.9 % and 25% respectively, and FFmalloc shows worst
memory overhead of 104.1 %. In most cases, Vatalloc-d does
not increase memory consumption, but there are exceptional
benchmarks in omnetpp and sphinx3, which tend to
allocate much larger memory than they actually use. Usually,
such excessive allocations are not critical, thanks to demand
paging technique, but they are problematic in Vatalloc because
all the associated memory tags should be initialized at
each allocation. Fortunately, this problem will be addressed
because Linux recently added to mmap a PROT_MTE flag that
initializes memory tags with a designated tag number when
pages are actually mapped to physical memory frames through

TABLE 1. Virtual Address Consumption over Single Benchmark Run.

demand paging. In the case of Vatalloc-j, we can see near-zero
memory overheads in most benchmarks. This is because due
to size-segregated chunks in jemalloc, exhausted chunks do
not increase memory fragmentation. Also, jemalloc has an
allocation strategy that allocates more chunks than necessary
in advance, which offsets the memory occupation of exhausted
chunks.

In PARSEC, Vatalloc also shows a high memory efficiency
on the basis of the maximum resident set size. At 64 threads,
both Vatalloc-d and Vatalloc-j incur 1.8 % memory overheads
on average, which are better than 104.2% of FFmalloc.
In vips, Vatalloc-d has rather less memory overhead than the
native execution, which is because Vatalloc-d unmaps unused
(i.e., exhausted) pages more aggressively than dlmalloc used
in the native execution.

E. NGINX
In order to evaluate Vatalloc on more realistic applications,
we measured the performance of Vatalloc-j using Nginx web
server as in Figure 12. We used wrk HTTP benchmarking
tool of Nginx version 1.23.3. ODROID-HC4 functions as a
server, while a machine with i9-10900K CPU and 128GB
RAM runs as a client. We configured the wrk benchmark
to execute 30 seconds per run, sending a 64-byte file. The
average degradation factor over the baseline is 3.9% and 4.3%
for imprecisemode and precisemode of Vatalloc-j respectively,
and is 11.4% for FFmalloc.

F. VIRTUAL ADDRESS CONSUMPTION
The detection capability of the VA-based scheme in the
lock-and-key approach is retained by default until VAs are
exhausted. The fact that each address can be reused multiple
times thanks to our VA tagging scheme is a strength in
this respect. To prove this we experimented how much
VA is consumed after a single program run in Vatalloc,
Oscar/DangZero, and FFmalloc, and the results are shown
in Table 1. Consequently, we were able to observe that the
VA tagging scheme of Vatalloc that facilitates VA reuses is
extraordinarily helpful in reducing the amount of consumption.
Address consumption of Vatalloc-j is about 1200 times
lower than Oscar/DangZero for perlbench, which implies
it would be lower than DangZero without GC-like page
reclaimer by the same magnitude. As anticipated, Vatalloc
consumes about 16 times lower va space than FFmalloc
for omnetpp and xalancbmk. It shows that Vatalloc can
support even long-running programs without failure in UAF

5472 VOLUME 12, 2024



I. Bang et al.: Enhancing a Lock-and-Key Scheme With MTE to Mitigate Use-After-Frees

FIGURE 13. Variation in Performance and Memory Overheads by the Granularity of the Page-level Exhaustion Tracking.

attack detection. When combined with the page reclaimer
shown by DangZero, performance improvement is expected
as the number of reclaimation would be drastically reduced.

G. GRANULARITY OF PAGE-LEVEL EXHAUSTION TRACKING
As described in subsection V-C, Vatalloc allows to change the
granularity of page-level exhaustion tracking, which is 4 KB
by default. To observe the effect of granularity change (from
4 KB to 32 KB), we conducted experiments on Vatalloc-d
and Vatalloc-j with allocation-intensive benchmarks, perl-
bench, dealII, omnetpp, and xalancbmk, whose
performance is worse relatively. As shown in Figure 13, results
revealed a rough trend, where memory consumption grows
proportionally with granularity, but execution time decreased
to a certain point. For memory usage, the trend is clearly
found in omnetpp, perlbench, and xalancbmk that
perform complex memory allocation/deallocation patterns,
because exhausted pages can be unmapped only when
they are concatenated as much as the granularity. On the
other hand, for execution time, the trend is not steady.
With a bit larger granularity, the frequency of unmap
invocations and page exhaustion state management operations
(e.g., search/insertion/deletion) is decreased, which leads
to performance improvement. However, extremely-large
granularity makes unmapping of pages hard, prolonging the
life time of the exhausted chunks. As a result, sparsely located
exhausted chunks increases access overhead, reversing the
performance trend in perlbench and xalancbmk.

H. CONSOLIDATION THRESHOLD
As stated in subsectionV-A, we can control the threshold of tag
number difference in consolidation on Vatalloc-d. The default
threshold is 15 (i.e., the maximum tag number difference),
which means that Vatalloc allows any consolidation. Similar
to subsection VI-G, we observed how the change in the
threshold affects both performance and memory in allocation-
intensive benchmarks. Figure 14 reports the results. Lowering
the threshold has two opposite effects; (negative) it may cause
external fragmentation by restraining consolidations between
small chunks, but (positive) it gives more chances to reuse the
same VA by suppressing consolidation (i.e., tag number of the
chunkwith the smaller tag number is wasted via consolidation).
Overall, we get better performance numbers with a lower
threshold in most benchmarks. It indicates that as these

FIGURE 14. Variation in Performance and Memory Overheads of Vatalloc-d
according to the Consolidation Threshold.

benchmarks tend to make aligned and size-uniform memory
allocations, they are insensitive to the external fragmentation
issue, and thus the aforementioned positive effect has greater
influence on performance than the negative one. When it
comes to memory overhead, most benchmarks just show
steady numbers. However, omnetpp shows exceptionally
increasing overhead, which is due to the negative effect with
a too-low threshold.

I. EFFECTIVENESS AND COMPATIBILITY
We assume that metadata of Vatalloc and the control flow
of a program are unharmed, and tag memory of MTE is not
manipulated by an attacker. In case of Vatalloc-d, an attacker
may maliciously point to its metadata to manipulate it.
However due to the disparity of pointer tag and the tag
number of the chunk, the attempt is neutralized. To evaluate
effectiveness in preventing UAF errors, we manually tested
Vatalloc with latest UAF vulnerabilities reported, which are
CVE-2022-34568, CVE-2022-40674, CVE-2022-3352, CVE-
2022-30065 and CVE-2022-36149 [34], [35], [36], [37], [38].
Initially, each exploit successfully executes a malicious action,
such as taking over arbitrary code execution, the instruction
pointer, or writing arbitrary data to memory. We observed that
Vatalloc successfully prevents compromises by changing the
tag numbers of the target objects upon deallocation, inducing a
tag mismatch, thereby nullifying dereferences to them. One of
MTE’s original purposes is to enforce spatial memory safety
probabilistically. In a typical method for this purpose, a pointer
and its referent object are given the same but randomly
selected tag number. By doing so, malicious attempts of
dereferencing a pointer to access outside its referent object are
detected probably due to a tag mismatch. As Vatalloc assigns
random pointer and referent pairs the same tag numbers,

VOLUME 12, 2024 5473



I. Bang et al.: Enhancing a Lock-and-Key Scheme With MTE to Mitigate Use-After-Frees

tag numbers are distributed uniformly. In this regard, the
methodology remains consistent with Vatalloc and spatial
safety is probabilistically enforced alongside Vatalloc.

VII. DISCUSSION
A. MTE FOR SPATIAL MEMORY SAFETY
Another major use of MTE is to enforce spatial memory safety.
In a typical method for this purpose, a pointer and its referent
object are given the same but randomly selected tag number.
By doing so, malicious attempts of dereferencing a pointer to
access outside its referent object are detected probably due to
a tag mismatch. This typical method is totally compatible with
Vatalloc. Since Vatalloc already assigns pointer and referent
pairs the same tag numbers, the method can be achieved by
Vatalloc randomizing chunks’ tag numbers.

B. PORTING TO OTHER MEMORY ALLOCATORS
The VA tagging scheme is generally applicable to many
allocators. To demonstrate this, we have implemented Vatalloc
based on two major memory allocators, jemalloc and dlmalloc,
but it can be ported to other memory allocators as well. For
example, we can consider porting Vatalloc to ptmalloc2, the
default allocator in latest Linux versions. Unlike dlmalloc,
ptmalloc2 does not share chunks among threads, but instead
manages them independently in each thread by maintaining
per-thread metadata. Despite this difference, as ptmalloc2
basically stems from dlmalloc, the tag management is
applicable to ptmalloc2. Also, the page-level exhaustion
tracking can be conducted at each thread by maintaining the
page exhaustion state thread-by-thread. tcmalloc, introduced
by Google is another recent memory allocators developed for
more cache-conscious memory allocation and strengthened
multithreading support. Implementation of the Vatalloc’s tag
management mechanism is expected to be well suited with
tcmalloc, since tcmalloc makes use of thread-specific and
size-segregated chunks like jemalloc. Additionally, the page
exhaustion tracking mechanism of Vatalloc is applicable
because tcmalloc manages internal allocation pools and caches
in a similar manner to jemalloc.

VIII. RELATED WORK
Two major approaches that have been studied for UAF
attack detection are pointer nullification and lock-and-key.
DangNull [2], FreeSentry [5] and Dangsan [5] follow the
former approach. They nullify dangling pointers to detect UAF
attacks when the pointers dereferenced. Similar to Vatalloc,
the techniques provide deterministic detection. However,
they incur excessive performance (e.g., 55 % in DangNull,
25 % in FreeSentry, and 41 % in DangSan) to the system
in constantly maintaining their dedicated data structures that
keep track of the referring relationships between objects and
pointers. To reduce performance overhead, a deferred free
scheme [6], [7] has been devised that intentionally delays
the reuse of freed objects’ memory, inspired by the fact that
UAF attacks will be launched shortly after objects are freed.
This scheme can be implemented easily by placing the freed

objects in quarantine memory for a while. In fact, in spite of
this scheme, AddressSanitizer [4] still incurs high performance
degradation, because this technique monitors every memory
access, aiming to detect not only UAF attacks but also out-of-
bounds accesses with a debugging purpose. More importantly,
due to the limited size of the quarantine memory where
the freed objects are residing, this technique can detect
UAF attacks only probabilistically. Therefore, to guarantee
deterministic detection of UAF attacks with a low overhead,
pSweeper [14], CRCount [11], MarkUs [10], CHERIvoke [9],
and Cornucopia [8] have added optimization mechanisms
to this deferred free scheme. For example, pSweeper runs
pointer nullification in a separate thread. CRCount waits for
dangling pointers to be nullified implicitly until the freed
object’s reference count is zero.MarkUs is similar to CRCount,
but instead of reference counting, it runs pointer marking
in a separate thread that scans memory to find remaining
dangling pointers. Thanks to such optimization mechanisms,
these techniques can achieve detection more efficiently, but it
comes at a cost. Compared to Vatalloc, they can detect only
one type of UAF attacks, and leave undetected the other type
of UAF attacks against the freed objects whose memory region
has not been reused yet. Moreover, their overheads are still
somewhat large, and they necessitate source code to apply their
optimization. The only techniques that provide comparable
detection with Vatalloc are CHERIvoke and Cornucopia.
However, as they ultimately take advantage of the pointer
marking mechanism of MarkUs, they also provide only partial
detection of UAF attacks. In addition, implementing them
requires an architectural capability [39]. There is an effort to
implement it in the real evaluation board [40], but it has not
yet been integrated into commodity processors, unlike MTE.
Unlike the above-mentioned techniques, CETS [41] and

Oscar [15] are based on the lock-and-key approach. They
distribute locks and keys to objects and pointers, respectively,
and check whether locks and keys match on each memory
access. In the case of CETS, locks and keys are defined
as 64-bit integers, which requires expensive data structures
that manage them by object and by pointer. Even worse,
the data structures should be referred to on every memory
access, which explains the large performance overhead of this
technique. To lessen the overhead and activate detection even
without source code, Oscar apply the VA-based scheme that
uses VAs as locks and keys, which is realized by ensuring each
object to be allocated in unique VAs using virtual memory
mapping. However the scheme spends many CPU cycles
which are entailed by extremely frequent kernel intervention
for memory management (i.e., invoking system calls such
as mmap, sbrk and munmap) in order to assign unique
VAs to every newly created object as well as to invalidate
the VAs of freed objects. Recent work in this category,
a VA-based technique, called FFmalloc [16], has attained
a reduction of runtime overhead by resolving the challenge
through batched invalidation of keys, but it achieves this
result only at a cost; that is, loss of its detection capability.
With FFmalloc, freed objects are still accessible through

5474 VOLUME 12, 2024



I. Bang et al.: Enhancing a Lock-and-Key Scheme With MTE to Mitigate Use-After-Frees

dangling pointers without being detected until they are finally
relinquished to the kernel when freed memory reaches a
certain number of consecutive pages. As the latest work in
this category, DangZero [17] solves this issue by granting
the program’s allocator an authority to access page table
directly for management and invalidation of keys. Direct
page table access is normally performed in ring 0, which
is the highest privilege running kernels. To do so, kernel
modification is required to run user-space applications in ring
0, which harms the applicability of the scheme. Vatalloc show
quite improvement in performance and memory overheads
over Oscar, thanks to the VA tagging scheme of Vatalloc
which enables it to reuse VAs several times by capitalizing
on MTE. FFmalloc has improved performance compared to
oscar, but at the cost of not being capable of deterministic
detection. In case of Vattaloc, depending on the desired mode,
checks for tag mismatches generate a segmentation fault on
safety violation. Vatalloc also shows better security and is
more applicable to long-running programs than FFmalloc,
because it can significantly delay VAs from being exhausted
by supressing consumption of it.

IX. CONCLUSION
We proposed a technique, Vatalloc, that provides efficient,
drop-in-use, and instant detection against dangling pointers.
Such an effective and practical detection capability comes
from our novel VA tagging scheme that advances the
VA-based lock-and-key scheme, by capitalizing on MTE.
The VA tagging scheme dramatically reduced the frequency
of TLB misses and kernel-involved page management that
mainly impairs the performance of the original VA-based
scheme. We realized our scheme by implementing Vatalloc
on dlmalloc and jemalloc, and demonstrated its effectiveness.

REFERENCES
[1] (2020). CWE Top 25 Most Dangerous Softw. Weaknesses. [Online].

Available: https://cwe.mitre.org/top25/archive/2020/2020_cwe_top25.html
[2] B. Lee, C. Song, Y. Jang, T. Wang, T. Kim, L. Lu, and W. Lee, ‘‘Preventing

use-after-free with dangling pointers nullification,’’ in Proc. NDSS, 2015.
[3] E. van der Kouwe, V. Nigade, and C. Giuffrida, ‘‘DangSan: Scalable use-

after-free detection,’’ in Proc. 12th Eur. Conf. Comput. Syst., Apr. 2017,
pp. 405–419.

[4] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, ‘‘AddressSani-
tizer: A fast address sanity checker,’’ in Proc. USENIX Annu. Tech. Conf.
(USENIX ATC), 2012, pp. 309–318.

[5] Y. Younan, ‘‘FreeSentry: Protecting against use-after-free vulnerabilities
due to dangling pointers,’’ in Proc. Netw. Distrib. Syst. Secur. Symp., 2015.

[6] G. Novark and E. D. Berger, ‘‘DieHarder: Securing the heap,’’ in Proc. 17th
ACM Conf. Comput. Commun. Secur., Oct. 2010, pp. 573–584.

[7] S. Silvestro, H. Liu, C. Crosser, Z. Lin, and T. Liu, ‘‘FreeGuard: A faster
secure heap allocator,’’ in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2017, pp. 2389–2403.

[8] N. Wesley Filardo et al., ‘‘Cornucopia: Temporal safety for CHERI heaps,’’
in Proc. IEEE Symp. Secur. Privacy (SP), May 2020, pp. 608–625.

[9] H. Xia, J. Woodruff, S. Ainsworth, N. W. Filardo, M. Roe, A. Richardson,
P. Rugg, P. G. Neumann, S. W. Moore, R. N. M. Watson, and T. M. Jones,
‘‘CHERIvoke: Characterising pointer revocation using CHERI capabilities
for temporal memory safety,’’ in Proc. 52nd Annu. IEEE/ACM Int. Symp.
Microarchitecture, Oct. 2019, pp. 545–557.

[10] S. Ainsworth and T. M. Jones, ‘‘MarkUs: Drop-in use-after-free prevention
for low-level languages,’’ in Proc. IEEE Symp. Secur. Privacy (SP),
May 2020, pp. 578–591.

[11] J. Shin, D. Kwon, J. Seo, Y. Cho, and Y. Paek, ‘‘CRCount: Pointer
invalidation with reference counting to mitigate use-after-free in legacy
C/C++,’’ in Proc. NDSS, 2019.

[12] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic, ‘‘CETS:
Compiler enforced temporal safety for C,’’ in Proc. Int. Symp. Memory
Manage., Jun. 2010, pp. 31–40.

[13] D. Dhurjati and V. Adve, ‘‘Efficiently detecting all dangling pointer uses
in production servers,’’ in Proc. Int. Conf. Dependable Syst. Netw. (DSN),
Jun. 2006, pp. 269–280.

[14] D. Liu, M. Zhang, and H. Wang, ‘‘A robust and efficient defense against
use-after-free exploits via concurrent pointer sweeping,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2018, pp. 1635–1648.

[15] T. H. Y. Dang, P. Maniatis, and D. Wagner, ‘‘Oscar: A practical page-
permissions-based scheme for thwarting dangling pointers,’’ in Proc. 26th
USENIX Secur. Symp., 2017, pp. 815–832.

[16] ‘‘Preventing use-after-free attacks with fast forward allocation,’’ Aug. 2021.
[17] F. Gorter, K. Koning, H. Bos, and C. Giuffrida, ‘‘DangZero: Efficient use-

after-free detection via direct page table access,’’ in Proc. ACM SIGSAC
Conf. Comput. Commun. Secur. New York, NY, USA: ACM, Nov. 2022,
pp. 1307–1322.

[18] Z. Cai, S. M. Blackburn, M. D. Bond, and M. Maas, ‘‘Distilling the real
cost of production garbage collectors,’’ in Proc. IEEE Int. Symp. Perform.
Anal. Syst. Softw. (ISPASS), May 2022, pp. 46–57.

[19] ARM Limited, ‘‘Armv8.5-A memory tagging extension,’’ White Paper,
2021.

[20] J. L. Henning, ‘‘SPEC CPU2006 benchmark descriptions,’’ ACM SIGARCH
Comput. Archit. News, vol. 34, no. 4, pp. 1–17, Sep. 2006.

[21] C. Bienia, S. Kumar, J. P. Singh, and K. Li, ‘‘The PARSEC benchmark
suite: Characterization and architectural implications,’’ in Proc. Int. Conf.
Parallel Archit. Compilation Techn. (PACT), Oct. 2008, pp. 72–81.

[22] E. A. Feustel, ‘‘On the advantages of tagged architecture,’’ IEEE Trans.
Comput., vol. C-22, no. 7, pp. 644–656, Jul. 1973.

[23] Arm Architecture Reference Manual for A-Profile Architecture, ARM Ltd.,
2023.

[24] Memory Tagging Extension User-Space Support, 2020. [Online]. Avail-
able: https://lore.kernel.org/linux-arm-kernel/20200703153718.16973-1-
catalin.marinas@arm.com

[25] D. Lea. (1996). A Memory Allocator Called Doug Lea’s Malloc or dlmalloc
for Short. Accessed: Mar. 26, 2010. [Online]. Available: http://gee.cs.
oswego.edu/dl/html/malloc.html

[26] W. Gloger. (2006). Ptmalloc. Consulté Sur. [Online]. Available: http:
//www.malloc.de/en

[27] J. Evans, ‘‘Scalable memory allocation using Jemalloc,’’ Eng. Meta., Menlo
Park, CA, USA.

[28] S. Nagarakatte, J. Zhao, M. M. K. Martin, and S. Zdancewic, ‘‘SoftBound:
Highly compatible and complete spatial memory safety for c,’’ in Proc.
30th ACM SIGPLAN Conf. Program. Lang. Design Implement., Jun. 2009,
pp. 245–258.

[29] P. Akritidis,M. Costa,M. Castro, and S. Hand, ‘‘Baggy bounds checking: An
efficient and backwards-compatible defense against out-of-bounds errors,’’
in Proc. USENIX Secur. Symp., 2009, pp. 51–66.

[30] I. Haller, Y. Jeon, H. Peng, M. Payer, C. Giuffrida, H. Bos, and E. van
der Kouwe, ‘‘TypeSan: Practical type confusion detection,’’ in Proc. ACM
SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 517–528.

[31] ODROID-HC4. Accessed: Jul. 2021. [Online]. Available: https://www.
hardkernel.com/ko/shop/odroid-hc4

[32] C. Ortega, H. Shrobe, M. Payer, H. Okhravi, N. Burow, D. McKee, and
Y. Giannaris, ‘‘Preventing Kernel Hacks with HAKCs,’’ in Proc. NDSS,
2022, pp. 1–17.

[33] X. Chen, Y. Shi, Z. Jiang, Y. Li, R. Wang, H. Duan, H. Wang, and C. Zhang,
‘‘MTSan: A feasible and practical memory sanitizer for fuzzing cots
binaries,’’ in Proc. 32nd USENIX Conf. Secur. Symp. (SEC). USA: USENIX
Association, 2023.

[34] NVD. (Jul. 28, 2022). CVE-2022-34568. [Online]. Available: https://nvd.
nist.gov/vuln/detail/CVE-2022-34568

[35] NVD. (Sep. 14, 2022). CVE-2022-40674. [Online]. Available: https://nvd.
nist.gov/vuln/detail/CVE-2022-40674

[36] NVD. (Sep. 29, 2022). CVE-2022-3352. [Online]. Available: https://nvd.
nist.gov/vuln/detail/CVE-2022-3352

[37] NVD. (May 18, 2022). CVE-2022-30065. [Online]. Available: https://nvd.
nist.gov/vuln/detail/CVE-2022-30065

[38] NVD. (May 18, 2022). CVE-2022-36149. [Online]. Available: https://nvd.
nist.gov/vuln/detail/CVE-2022-36149

VOLUME 12, 2024 5475



I. Bang et al.: Enhancing a Lock-and-Key Scheme With MTE to Mitigate Use-After-Frees

[39] R. N. M. Watson, J. Woodruff, P. G. Neumann, S. W. Moore, J. Anderson,
D. Chisnall, N. Dave, B. Davis, K. Gudka, B. Laurie, S. J. Murdoch,
R. Norton, M. Roe, S. Son, and M. Vadera, ‘‘CHERI: A hybrid capability-
system architecture for scalable software compartmentalization,’’ in Proc.
IEEE Symp. Secur. Privacy, May 2015, pp. 20–37.

[40] (2020). Arm Morello Program. [Online]. Available: https://developer.arm.
com/architectures/cpu-architecture/a-profile/morello

[41] (2014). SoftBoundCETS for LLVM+Clang Version 34. Accessed:
Apr. 21, 2020. [Online]. Available: https://github.com/santoshn/
softboundcets-34

INYOUNG BANG received the B.S. degree in
electrical and computer engineering from Seoul
National University, South Korea, in 2017, where
he is currently pursuing the Ph.D. degree in
electrical and computing engineering. His research
interest includes system security against various
types of threats.

MARTIN KAYONDO received the B.S. degree in
electrical and computer engineering from Seoul
National University, South Korea, in 2020, where
he is currently pursuing the Ph.D. degree in
electrical and computing engineering. His research
interest includes system security against various
types of threats.

JUNSEUNG YOU received the B.S. degree in
electrical and computer engineering from Seoul
National University, South Korea, in 2019, where
he is currently pursuing the Ph.D. degree in
electrical and computing engineering. His research
interest includes system security against various
types of threats.

DONGHYUN KWON received the B.S. and Ph.D.
degrees in electrical and computer engineering
from Seoul National University, South Korea,
in 2012 and 2019, respectively. He is currently
a Professor with the School of Computer Sci-
ence and Engineering, Pusan National University,
South Korea. His research interest includes the
system security against various types of threats.

YEONGPIL CHO received the B.S. degree in elec-
trical engineering from POSTECH, South Korea,
in 2010, and the Ph.D. degree in electrical
and computer engineering from Seoul National
University, South Korea, in 2018. Currently, he is
a Professor with the Department of Computer
Science, Hanyang University. His research interest
includes the system security against various types
of threats.

YUNHEUNG PAEK (Member, IEEE) received the
B.S. and M.S. degrees in computer engineering
from Seoul National University, South Korea, in
1988 and 1990, respectively, and the Ph.D. degree
in computer science from the University of Illinois
at Urbana–Champaign, in 1997. Currently, he is
a Professor with the Department of Electrical and
Computer Engineering, Seoul National University.
His research interests include system security with
hardware, the secure processor design against

various types of threats, and machine learning-based security solution.

5476 VOLUME 12, 2024


