
IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023 4915

ZOMETAG: Zone-Based Memory Tagging for Fast,
Deterministic Detection of Spatial

Memory Violations on ARM
Jiwon Seo , Junseung You , Donghyun Kwon , Yeongpil Cho , and Yunheung Paek , Member, IEEE

Abstract— Against spatial memory violations threatening a
vast amount of legacy software, various safety solutions have been
suggested for decades. However, their practical uses have been
impeded by diverse reasons, such as significant overheads and
mandatory modifications of existing architectures. Accordingly,
there has been a clear need for a practical safety solution
that is fast enough and yet runs on commodity systems for
its wide applicability in the field. As an effort to meet this
need, a major processor vendor, ARM, recently announced a
hardware extension, called Memory Tagging Extension (MTE),
that helps engineers to implement efficient safety solutions.
However, due to lack of hardware tags to isolate all data objects,
MTE either resorts to a probabilistic memory safety guarantee,
which is susceptible to a security loophole, or suffers from severe
performance degradation to guarantee deterministic security.
The aim of our work is to develop a MTE-based deterministic
spatial safety solution, called ZOMETAG, with high efficiency by
capitalizing on salient architectural features. Our key idea for
fast, deterministic safety is to somehow assign permanently all
objects unique tags throughout program execution. For this,
ZOMETAG first divides the data memory into a number of
small regions, called zones, and distributes data objects over the
zones subject to certain constraints (to be discussed later). Then,

Manuscript received 23 December 2021; revised 5 June 2023; accepted
11 July 2023. Date of publication 27 July 2023; date of current version
11 August 2023. This work was supported in part by the BK21 FOUR Program
of the Education and Research Program for Future Information and Com-
munications Technology (ICT) Pioneers, Seoul National University, in 2023;
in part by the Institute of Information and Communications Technology
Planning and Evaluation (IITP) funded by the Korean Government [Ministry
of Science and ICT (MSIT)], South Korea, through the Analysis on Technique
of Accessing and Acquiring User Data in Smartphone under Grant 2020-0-
01840; in part by IITP funded by the Korean Government (MSIT) through
the Reduced Instruction Set Computer-Version 5 (RISC-V) Based Secure
Central Processing Unit (CPU) Architecture Design for Embedded System
Malware Detection and Response under Grant 2021-0-00724; in part by the
MSIT under the Information Technology Research Center (ITRC) Support
Program Supervised by the IITP under Grant IITP-2023-2020-0-01797; and
in part by the National Research Foundation of Korea (NRF) funded by
the Korean Government (MSIT) under Grant NRF-2022R1A4A1032361. The
associate editor coordinating the review of this manuscript and approving it for
publication was Dr. Andrew Clark. (Jiwon Seo and Junseung You contributed
equally to this work.) (Corresponding authors: Yeongpil Cho; Yunheung Paek.)

Jiwon Seo, Junseung You, and Yunheung Paek are with the Department of
Electrical and Computer Engineering (ECE) and the Inter-University Semi-
conductor Research Center (ISRC), Seoul National University, Gwanak-gu,
Seoul 08826, South Korea (e-mail: jwseo@sor.snu.ac.kr; jsyou@sor.snu.ac.kr;
ypaek@snu.ac.kr).

Donghyun Kwon is with the School of Computer Science and Engi-
neering, Pusan National University, Pusan 46241, South Korea (e-mail:
kwondh@pusan.ac.kr).

Yeongpil Cho is with the Department of Computer Science, Hanyang
University, Seoul 04763, South Korea (e-mail: ypcho@hanyang.ac.kr).

Digital Object Identifier 10.1109/TIFS.2023.3299454

we extend the notion of a tag in a way that each object stored with
MTE tag t in zone z is uniquely assigned the zone-tag pair <z,t>
as a new tag. To work with this new tag assignment, we devise
a novel mechanism, called two-layer isolation, that is basically
a combination of MTE-based tagging (for one-layer of isolation)
with zone-based tagging (for the other) both of which collaborate
together to ensure spatial safety for all objects by preventing a
pointer currently assigned one zone-tag pair from erroneously
referring to objects assigned different pairs. Our experimental
results are quite encouraging. ZOMETAG enforces deterministic
spatial safety with overheads of 35% in SPEC CPU2006 and
merely of 6% in real world applications like nginx.

Index Terms— Spatial memory violations, memory safety,
Memory Tagging Extension (MTE), bounds checking (BC).

I. INTRODUCTION

SPATIAL memory violations, such as buffer and stack
overflows, are wrongful accesses that break legitimate

bounds of memory objects. These errors, considered as a
major threat to programs written in unsafe languages like
C and C++, often occur when dereferencing a pointer that
refers to any memory address outside its referent object. As
a prominent approach to protecting programs from spatial
memory violations, bounds checking (BC) has been actively
studied by researchers. BC is able to detect any occurrence
of these errors by checking at every memory access whether
pointers are referring to within valid bounds of their refer-
ents. Unfortunately, despite its verified security, BC is not
broadly adopted in real-world applications mainly because
of its excessively large performance overhead for practical
use. Most of the time-consuming operations severely and
adversely contributing to performance are those conducted
to accomplish two major tasks of BC: boundary comparison
and metadata maintenance. To be specific, for sanitizing
memory accesses by pointers, BC must load the correspond-
ing lower/upper bounds information and compare the loaded
bounds with the addresses referred to by pointers on every
pointer dereference and/or pointer arithmetic during program
execution. In addition, in order to maintain the metadata for
these bounds associated with pointers up-to-date, it must keep
track exhaustively of every pointer creation/propagation.

As an alternative to BC for spatial memory safety, memory
tagging (MT) [1] has gained traction among researchers thanks
to the performance merit of MT over BC that a relatively
low-cost integer comparison can replace each round of bounds
comparison for the sanity check. In the MT scheme for

1556-6021 © 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Seoul National University. Downloaded on October 04,2025 at 15:58:55 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0003-1848-750X
https://orcid.org/0000-0003-1539-229X
https://orcid.org/0000-0002-7507-3111
https://orcid.org/0000-0001-7842-1719
https://orcid.org/0000-0002-6412-2926

4916 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

memory safety, pointers and memory objects are assigned
unique identification integers, called tags. On each memory
access via a pointer, MT performs sanity checks by comparing
the tags of the pointer and its referent. MT regulates that all
pointers and their legitimate referents have the same tags.
Therefore, if the tags do not match, the memory access
will be deemed illegal and prohibited immediately to ensure
memory safety. In the MT scheme, there are two elemental
tag operations on pointers and objects: tag coloring to assign
tags to pointers/objects and tag matching to compare the
tags of pointers and objects. A notable strength of MT is its
structural suitability for realization in hardware, known as the
tagged memory architecture (TMA), which is to accelerate
MT operations that would otherwise be too expensive to use
in general applications. TMA has a memory whose word is
extended with extra bits for tag as metadata. It also comes with
special instructions to work with tags, and offers architectural
extensions to enable simultaneous execution of tag matching
and pointer deferencencing. The MT scheme with such strong
hardware support from TMA has earned great potential to
mitigate spatial memory errors with more ease and efficiency
than the BC counterpart.

For the past decades, as the effectiveness of MT has been
evinced, a variety of TMAs have been introduced to processor
designs. Among them, a version, named as the Memory
Tagging Extension (MTE) or Application Data Integrity (ADI),
is built in mainstream processors, such as ARMv8.5-A [1]
and SPARC M7/8 [2]. With the advent of MTE/ADI, the
MT scheme seemingly becomes more practical and attractive
in detecting memory safety violations for a broad range of
real-world programs running on commodity systems. How-
ever, when reality kicks in, there is always a trade-off. Ideally,
to guarantee complete spatial memory safety, MT requires
tens of thousands or even more tags that can be assigned
distinctively to pointers and objects in a program. In reality,
however, MTE/ADI only offer 16 tag values because they
set aside just four unused bits for tags to avoid substantial
modifications and increasing logic complexities added to the
existing architecture [3]. Inevitably, different objects might
be assigned/colored the same tag value over time, or at the
same time throughout program execution. This suggests that
violation detection with MTE/ADI is probabilistic as the
random tag/color will be equal to another random one with
a probability of about 1/16. Unfortunately, this probabilistic
guarantee of spatial safety leads to a security loophole where
some wild accesses are statistically likely to be uncaught.
Therefore, to achieve the same level of deterministic security
that BC does for sanity checking, we must somehow mend
this innate loophole that originated from architectural design
constraints. One remedy would be to carefully assign tags
in a way to ensure that multiple objects are never colored
with the same MTE/ADI tag at any moment during exe-
cution. For example, we may instrument the program code
with dynamic tag management that always keeps each tag
exclusively assigned to one object by uncoloring a colored
object before coloring another object with the same tag. The
downside of this exclusive tag assignment is that it incurs
quite frequent coloring/uncoloring operations at runtime, thus

significantly raising the runtime cost of MT and offsetting the
performance advantage of MT over BC. In conclusion, the MT
scheme with ideal hardware support can be a viable alternative
to BC, which suffers from serious performance problems,
in fighting against memory safety violations. But owing to
physical limitations of real hardware, MTE/ADI cannot afford
enough support for complete and efficient memory safety
enforcement, and hence demands the actual MT scheme to
trade off either performance for security or vice versa.

In this paper, we present ZOMETAG, our MT scheme engi-
neered for fast and deterministic detection of spatial memory
violations. ZOMETAG is designed to specifically target ARM
MTE by taking full advantage of its architectural support
for violation detection while taking into account its hardware
limitations. In principle, like SPARC ADI, ARM MTE offers
spatial isolation between objects for memory safety by assign-
ing different tag colors (or equivalently, memory regions) to
them. But in practice, it does not supply enough colors for
total isolation among all live objects created and accessed at
runtime. To overcome the color shortage problem, ZOMETAG
adopts a two-layer isolation mechanism by adding another
layer of isolation based on zones, which are literally divided
regions with boundaries in the memory space. To put two-layer
isolation into effect, ZOMETAG prohibits different objects
allocated in one zone from being assigned the same tag color,
while allowing one tag to be used to color objects in different
zones. With this tag assignment regulation enforced, note that
ZOMETAG is technically offering two layers of isolation by
assigning mutually different pair combinations of zones and
tags, denoted by (z,t), to each object allocated with tag t inside
zone z. In ZOMETAG, when a pointer is created or modified to
point newly to a referent associated with (z,t), it is assumed to
be virtually colored with the same zone-tag pair (z,t) although
the pointer is physically colored by MTE only with tag t in
the pair. Therefore to enforce spatial memory safety with our
two-layer isolation, ZOMETAG applies the rule that permits a
pointer colored with one zone-tag pair to access only the object
with the same pair.

Applying this safety rule to pointers/objects colored with the
zone-tag pairs having the same zone is rather trivial; that is,
ZOMETAG simply relies on MTE for tag matching as objects
in the same zone are all assured to have different tags in our
two-layer isolation mechanism. The real challenge arises when
we need to enforce the rule among those colored with the pairs
having different zones. Obviously, we can no longer use MTE
for safety violation detection because by our tag assignment
regulation, objects are allowed to have the same tag as long
as they are allocated in different zones. In fact, addressing
this challenge is the reason why we have introduced to our
isolation mechanism the zone-based isolation that prevents a
pointer from accessing beyond the boundaries of the native
zone of its referent. The basic principle of zone-based isolation
is to disallow any address generated by pointer arithmetic
from referring to objects in other zones than the native one
referred to by input pointers of the arithmetic. If this principle
is compromised, a pointer can be maliciously used to access
objects in a foreign zone that are colored with different zone-
tag pairs, which is clearly a violation of the aforementioned

Authorized licensed use limited to: Seoul National University. Downloaded on October 04,2025 at 15:58:55 UTC from IEEE Xplore. Restrictions apply.

SEO et al.: ZOMETAG: ZONE-BASED MEMORY TAGGING FOR FAST, DETERMINISTIC DETECTION 4917

spatial safety rule. To establish zone-based isolation for spatial
safety, ZOMETAG imposes a certain restriction on pointer
arithmetic. The way of holding this restriction or limitation
may vary depending on the actual implementation for zone-
based isolation. In our work, we place a limit on the range of
offset values added to or subtracted from pointers in arithmetic
operations; that is, their maximum values are restricted not to
be more than the zone size. This restriction has to do with
our unique design for layout of zones in memory, where we
partition the entire address space of a program evenly into a
sequence of zones, and classify them into two classes: blue
and red. In the sequence, we arrange the blue and red zones
alternately in a row. Objects are allocated only in the blue
zones, while no access is allowed to the red ones which are
basically gaps or no man’s lands reserved for location-based
violation checking.

As will be detailed in Section IV, ZOMETAG is able to
efficiently enforce our restriction on pointer arithmetic at
runtime by utilizing special hardware registers and instruc-
tions on commodity processors. Let us note here that due to
the restriction on offset values, a single addition/subtraction
operation on a pointer results in the output address just
pointing to either the same blue zone the pointer originally
refers to or the red one right next to it. There is no safety
violation in the former case and no extra action is required.
The latter surely constitutes a breach of spatial safety as red
zones are inaccessible. Therefore, ZOMETAG must be equipped
with a safeguard to alert for wrongful access to red zones.
Fortunately, as also discussed in Section VI, ZOMETAG is able
to detect trespass from a blue zone into its neighboring red
zone with low runtime cost by checking merely a single bit
that indicates the overflow of an address beyond the current
blue zone. All in all, through our experiments, by introducing
two-layer isolation, ZOMETAG has been evidenced to suc-
cessfully perform deterministic detection of spatial memory
violations on real-world applications. Moreover, it has been
empirically demonstrated that ZOMETAG ensures such spatial
memory safety with relatively low performance overhead by
capitalizing on existing architectural support for our zone-
based memory tagging (i.e., MTE coupled with zone-based
isolation).

II. BACKGROUND

MTE, which has been introduced since ARMv8.5 archi-
tectures [1], facilitates efficient sanity checks on memory
access. In the MTE, pointers and memory objects are assigned
tags, which are specifically called pointer (or logical) tags
and memory (or allocation) tags, respectively. In MTE, 4-bit
memory tags, each of which respectively corresponds to a
memory block of 16 bytes (64 bytes in SPARC’s ADI), are
stored in separate tag memory through special instructions,
such as STG and ST2G. On the other hand, 4-bit pointer tags
are located at [56:59] bits of pointers. Interestingly, the pointer
tags are not taken in memory addressing by the Top Byte
Ignore feature of ARM architecture which renders the top
byte of a virtual address ignored during address translation.
A 4-bit pointer tag can be numbered from 0 to 15. Among
them, a tag 0, which untagged pointers will have by default,
is specially treated by MTE not to restrict memory access.

Also, tag 15 is not recommended in use due to a performance
issue. When enabled, the MTE verifies memory accesses
by comparing each corresponding pointer tag and memory
tag. Note that memory accesses are permitted only if tags
match, and if not, MTE raises tag check faults. Here, MTE
provides precise and imprecise modes, which respond to the
faults, respectively, by raising exceptions synchronously or
by reporting asynchronously. Comparing the two modes, the
imprecise mode cannot exactly identify faulty memory access
but incurs much smaller overheads than the precise mode.
Furthermore, MTE offers the imprecise mode that includes
an additional feature to ensure fault reporting is completed
prior to context switching to the OS kernel. This helps prevent
faults from causing significant damage, such as information
leaks. Therefore, the imprecise mode is suitable for enabling
protection in practical use [4], and we also capitalize on this
mode in ZOMETAG.

III. THREAT MODEL AND ASSUMPTIONS

We postulate security assumptions that are consistent with
related research on spatial memory safety as described
in Section VIII. Target programs written in C/C++ languages
are benign but have vulnerabilities potentially exploitable by
attackers who intend spatial memory errors. Against such
spatial errors, ZOMETAG provides spatial safety at a granularity
of objects, as in recent previous studies [5], [6], [7]. It implies
that, as in the previous studies, ZOMETAG does not respond to
certain spatial memory errors occurring between sub-objects
in an object of a composite data type, but which is helpful in
increasing compatibility with C/C++ programming practices,
such as initializing/copying/comparing objects using a single
pointer [8], [9]. In this work, other types of threats, such
as code injection [10], [11], use-after-free [12], [13], [14],
[15], type confusion [16], [17], and hammering [18], [19],
except for inter-object spatial errors are not considered. That
is, we assume that all the metadata of ZOMETAG and control
flow of target programs are intact as long as ZOMETAG is
enabled.

IV. DESIGN

ZOMETAG is aimed to provide efficient spatial memory
safety. In this section, we elaborate on how ZOMETAG achieves
its goal on commodity systems featured with MTE.

A. Two-Layer Isolation at a Glance

The two-layer isolation mechanism is devised to effec-
tively and efficiently enforce spatial memory safety. With our
two-layer isolation put into effect, every object in a program
is associated or colored with a distinct zone-tag pair (z,t)
whenever each of them is allocated in one designated (blue)
zone z and assigned an MTE tag t different from those
already assigned to other objects in z. Now, the mission of
ZOMETAG is to uphold two-layer isolation for spatial memory
safety by efficiently forcing pointers to access their legitimate
referent objects according to their assigned zone-tag pairs.
For efficiency, ZOMETAG takes advantage of existing hardware
support for zone-based memory tagging on top of the MTE-
supported spatial isolation. The simultaneous application of

Authorized licensed use limited to: Seoul National University. Downloaded on October 04,2025 at 15:58:55 UTC from IEEE Xplore. Restrictions apply.

4918 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 1. Overview of ZOMETAG design.

these two hardware-supported spatial isolations is geared to
confine the memory access capability of a pointer into memory
objects associated with exactly the same zone and tag assigned
to the pointer. For example, assume that a pointer whose
legitimate referent was already defined is about to have a
new address value set by an assignment instruction. The zone-
based isolation first reduces the accessible memory space of
the pointer from the entire program data space to one zone
where its referent is located. Next, MTE further tightens the
pointer’s memory access capability within the zone by limiting
its accessible region to the memory objects with the same
MTE tag value as its own tag. In this way, the two-layer
isolation mechanism of ZOMETAG ensures that pointers are
only allowed to access their legitimate referents, thwarting any
spatial memory violations that attempt to access other objects
with different tag colors or residing in different zones.

Figure 1 illustrates the design of our two-layer isolation
mechanism at a glance. To implement the mechanism, we first
construct zones by evenly splitting the data memory space of a
program. We then allocate any types of objects that need sanity
checks, such as heap, stack and global variables, into these
zones. In our mechanism, we actualize MTE-based spatial
isolation within a zone by restricting the number of objects
allocated in one zone not to exceed the total number of MTE
tags (i.e., 16 on ARM) and assigning every object mutually
distinct tags. To enable the zone-based isolation, the other
pillar of our two-layer isolation, we instrument all pointer
arithmetic operations. The purpose of the instrumentation is
to impose a certain restriction on the size of offset values in
pointer arithmetic operations. Importantly, we here match the
size of offset values with the size of each zone, and arrange
two types of zones (i.e., blue ones for object allocations and
red ones for violation detection) alternately in a row along
the data memory space. Note that in our instrumented code,
any change in a pointer value resulting from pointer arithmetic
can never be larger than the zone size. This implies that no
single arithmetic operation performed on a pointer referring to
a blue zone can induce the pointer to access objects in zones
other than the same blue zone and the immediate next red
zone. Obviously, in this design of our zone-based isolation,
detecting spatial violation is quite straightforward because red
zones act as tripwires for erroneous memory accesses crossing
zone boundaries, and thus any address pointing to a red zone
as a result of pointer arithmetic is solid evidence of the

Fig. 2. Example of dynamic offsets of U-stack objects.

violation. As blue and red zones are of identical size (normally,
a power of two) and arranged alternately, it is relatively easy
to determine whether an address falls into a red zone or a blue
zone by testing a specific bit in the address field, as will be
detailed later.

B. Zone Constructions and Object Allocations

The provision of spatial safety by ZOMETAG begins with
allocating objects into zones. To achieve this, ZOMETAG
logically splits a program’s data memory space into blue and
red zones, each of which is of identical size, specifically
4 GB, as illustrated in Figure 1. Objects are assigned to blue
zones, and pointers are only permitted to access blue zones.
Conversely, red zones serve as inaccessible regions, enabling
the detection of spatial violations resulting from erroneous or
malicious attempts to access objects beyond the boundaries
of blue zones. When allocating an object to blue zones,
ZOMETAG complies with these two constraints:

• C1: The number of objects allocated in a blue zone must
not be more than that of available MTE tags (16 in this
work)

• C2: The total combined size of all objects allocated in the
same blue zone must not exceed the zone size (i.e., 4 GB).

In a program, data objects are typically categorized into
three types: heap, stack, and global. According to their types,
ZOMETAG allocates objects differently as shown below, subject
to C1 and C2.

1) Heap Objects: As will be described in Section V,
we have implemented a custom memory allocator that
observes C1 and C2 while allocating objects into blue zones.
When malloc() is invoked to allocate an object m, our allo-
cator first rounds the requested size for m to a multiple of the
tag granule (i.e., 16 B). It then fetches a blue zone satisfying
C1 and C2 for the object m. If the allocator finds no such
zone among the candidates, it exits with an error code. Our
allocator separately manages its internal metadata in a separate
zone so that the metadata can be protected against malicious
heap accesses by our zone-based isolation mechanism.

2) Stack Objects: One challenge in our stack object allo-
cation is that to meet C1 and C2, the stack tends to consume
more memory space as it is allowed only to contain blue
zones and each zone is allowed only to store a limited
number of objects. This memory consumption problem will
become grave particularly if a program has many deep function
calls or recursive calls. To alleviate this problem, we have
modified the stack layout as well as the stack management
policy by adopting the idea behind SafeStack [20] whose

Authorized licensed use limited to: Seoul National University. Downloaded on October 04,2025 at 15:58:55 UTC from IEEE Xplore. Restrictions apply.

SEO et al.: ZOMETAG: ZONE-BASED MEMORY TAGGING FOR FAST, DETERMINISTIC DETECTION 4919

security goal (i.e., ensuring control-flow integrity) is different
from ZOMETAG. SafeStack separates objects into two groups
considering their exploitability. To be specific, exploitable
objects like arrays are stored in the Unsafe stack (U-stack),
and non-exploitable ones like simple integer variables in the
Safe stack (S-stack). Such a classification is just for SafeStack
to leave unsafe objects unprotected that are not of interest
in its security goal. In the perspective of ZOMETAG aiming
at ensuring memory safety, however, such a classification
inspired that we only need to spend extra memory and time in
applying our two-layer isolation scheme to obey C1 and C2
for exploitable, unsafe objects stored in the U-stack. In our
implementation, whenever unsafe objects are allocated into or
deallocated from the U-stack, ZOMETAG keeps track of the
total count and size of all objects occupying the current blue
zone in the U-stack, and checks C1 and C2. If ZOMETAG
cannot find in the U-stack any blue zone that satisfies C1 and
C2 for a newly allocated object, it adds a new blue zone to
the U-stack and places the object in the zone. Likewise, as the
U-stack continues to grow or shrink during program execution,
a new blue zone is included or an existing zone is excluded
from the U-stack, respectively.

By default, SafeStack defines two stack pointers: one legacy
stack pointer (i.e., sp) for the S-stack and an additional one
(i.e., sp_U) for the U-stack. Let us note here that objects in
a legacy stack are typically referenced using offset addressing
based on the stack pointer (SP). However, in our runtime
environment where ZOMETAG is enabled, the SP-based offset
addressing is not available for U-stack objects, but only for
S-stack ones. Like ordinary objects stored in the legacy stack,
S-stack objects can be accessed by instructions with offset
addressing mode because their offsets (or distances) from
the SP can be statically determined during compilation. In
contrast, U-stack objects have offsets varying with different
call stack sequences dynamically generated during runtime. To
explain this, consider an example in Figure 2 where multiple
U-stack objects are allocated in a function. We can see that
their locations (equivalently, offsets from the sp_U) in the
U-stack may vary depending on the decision of whether
or not they are allocated in the same zone. Unfortunately,
this decision is only made at runtime by the ZOMETAG
allocator that checks C1 and C2 when those objects are
actually allocated. Thus, to always refer properly to U-stack
objects with such dynamic offsets, ZOMETAG provides each
U-stack object with an individual pointer that stores the actual
address in a blue zone where the corresponding object is
allocated during execution. As those pointers referring to
U-stack objects are basically non-exploitable, they are all
allocated in the S-stack and referenced via the SP-based offset
addressing.

3) Global Objects: While heap and stack objects are allo-
cated dynamically at runtime, global objects are permanently
allocated at fixed locations when a program is loaded and freed
when it terminates. This means that ZOMETAG does not have to
pour its energy into zone-aware allocations for global objects
at runtime. Instead, ZOMETAG predetermines the positions
of global objects at compile time and distributes them over
several blue zones that, of course, satisfy C1 and C2.

C. Zone-Based Isolation
By constructing zones and coloring objects in each blue

zone subject to two constraints C1 and C2, we can establish
one layer (i.e., MTE-based) of spatial isolation between every
heap, stack, and global object within each individual zone.
Now, to obtain a complete mechanism for our two-layer
isolation, we must build in another layer (i.e., zone-based)
of spatial isolation, briefly described in Section IV-A. The
purpose of zone-based isolation is to limit the memory acces-
sibility of a pointer to the specific zone where its referent
belongs. A naive but costly solution to realize this isolation
would be performing BC on every memory access in a way
to prevent any address generated by pointer arithmetic from
being used to access objects in other zones than the native
one initially referred to by input pointers of the arithmetic.
Being compared to such inter-zone BC, our solution requires
fairly low overhead for performing extra operations to enforce
isolation between zones, and furthermore, being coupled with
the MTE-based isolation, it constitutes complete inter- as
well as intra-zone isolation throughout the entire program
execution.

As discussed above, in our design for the zone-based
isolation, all pointer arithmetic instructions are instrumented
to have only 32-bit registers as the operands for offset values.
Also, in the design, each zone is set to have a 4GB address
space. The design that (1) forces every pointer operation to
have 32-bit register operands and (2) sets every zone to 4GB is
not decided by chance but rather intended to facilitate memory
violation detection in our mechanism. Specifically, our design
guarantees that the maximum range of address values on every
pointer arithmetic is equal to 232, which matches 4G, the size
of a blue/red zone. To explain this in more detail, suppose
that as stated in Section IV-B, there is a sequence of blue
zones and red zones alternately ordered in the memory where
bi and ri are the i-th zones in the sequence. Then, it is clear
from our design that any pointer arithmetic operation cannot
make a pointer currently having its referent object in zone bi
refer to an object in a different zone b j . The only address that
the pointer will have as a result is an address either in bi or
in ri . As has been said earlier, any operation that results in
a pointer accessing the red zone ri is immediately considered
a spatial safety violation. From this fact, we can see that our
zone-based isolation always successfully deters or detects any
malicious attempt to violate inter-zone isolation. In our design,
it is noteworthy that detecting illegal access to a red zone
can be done with low cost by examining a single bit. Similar
to identifying even numbers by checking the 0th bit, we can
distinguish between adjacent bi and ri by reading the 32nd
bit of the pointer value:e.g., 0 → blue zone and 1 → red
zone. To be specific, after each pointer arithmetic operation,
ZOMETAG extracts and tests the 32nd bit of the output pointer
value, and aborts if the bit value indicates a red zone. Luckily,
this procedure can be efficiently implemented on ARM by
executing a single test-and-branch [1] instruction that takes
a branch depending on the value of a designated bit of its
operand.

For complete isolation, we basically need to instrument
the code for testing the output pointer value after every

Authorized licensed use limited to: Seoul National University. Downloaded on October 04,2025 at 15:58:55 UTC from IEEE Xplore. Restrictions apply.

4920 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

pointer arithmetic operation. Although inserting just one test
instruction after each pointer operation is sufficient to deter
trespassing in a red zone, the total overhead for testing all
pointer operations is still not negligible. Fortunately, we have
discovered that much of the overhead can be optimized as tests
can be omitted for a certain case where pointer operations are
immediately followed by loads/stores. This scenario is com-
monly encountered in programs because pointer operations are
typically used to calculate addresses for subsequent memory
operations in the execution flow. In this case, even if the
output pointer becomes invalid (referring to a red zone) as
a result of a pointer operation, and manages to bypass the
test for accessing a red zone during a load/store operation,
ZOMETAG has an additional safety measure to deter erroneous
loads/stores from escaping blue zones to approach red ones.
Our empirical observation reveals that a majority of tests are
redundant and eliminated in our benchmarks, consequently
helping ZOMETAG save a significant amount of time and space
overhead that would otherwise be added to our performance
numbers.

D. Multithreading

ZOMETAG supports multithreaded programming because
its two-layer isolation mechanism operates in a thread-safe
manner. We can abstract the operations of the mechanism
into two classes: (1) a zone-tag pair allocation per object
and (2) object isolation on the basis of zone-tag pairs. Of
the two operation classes, the latter one is naturally free from
any concurrency issue because once allocated to objects, zone-
tag pairs are continuously read for object isolation but never
changed. In ZOMETAG, the operations in the former class do
not suffer from any concurrency issues, even though there
may be simultaneous allocations of zone-tag pairs in multiple
threads. Note that allocating zone-tag pairs to objects involves
two types of tasks: placing each object into one of the zones
and coloring the object with a unique tag. The tag coloring
task is independent of concurrency issues since this task only
affects the tag memory locations exclusively occupied by each
object. On the other hand, we must pay attention to the object
placement task because the constraints C1 and C2 should be
considered globally by multiple threads that simultaneously
run and allocate objects in the same zone. Fortunately, among
the three kinds of memory objects, heap, stack, and global,
that are isolated by ZOMETAG, global and stack objects are
worry-free as the former ones are allocated statically, and the
latter ones are allocated thread-locally. As for heap objects,
we can avoid concurrency issues by checking the constraints
within a critical section which is typically protected in a
heap allocator by mutex locks. For the sake of more efficient
multithreading, we may introduce to ZOMETAG a concept
of thread-local zones that assigns zones dedicated to each
thread. This way will allow us to check C1 and C2 without
concurrency issues because threads are no longer sharing
zones for object allocations.

V. IMPLEMENTATION

We implemented the prototype of ZOMETAG using LLVM
4.0.0. Considering the constraints C1 and C2, we developed a

memory allocator for heap objects and an LLVM pass/runtime
library for global and stack objects. We also developed
another LLVM pass to realize the zone-based isolation by
instrumenting all pointer arithmetic operations. The following
subsections present the implementation details.

A. Tag Coloring

Every time objects are allocated, ZOMETAG colors them
with unique random tags in each zone. Heap objects are
colored by the memory allocator before returning. Stack and
global objects are colored by the runtime library before they
are accessed. For example, stack objects are colored at each
function prologue, and global objects are colored by a separate
initialization function before main() runs. In tag coloring,
ZOMETAG does not use the entire 16 tags but only 14 tags
(from tag 1 to 14), excluding two exceptional tags: tag 0 and
15, as explained in Section II. This means that each zone can
allocate up to 14 objects. Tag 0 is used specifically to mark
red zones as tripwires. Since in Linux, tag 0 is the initial tag
of memory regions when mapped with MTE enabled, we can
naturally render red zones inaccessible by keeping their tags
intact (i.e., tag 0) and using only non-zero tags in blue zones
for all pointers and objects.

B. Zone-Based Heap Memory Allocator

To implement our heap memory allocator, we modified
the existing allocator [21] that uses size-segregated freelists,
in which unallocated (or free) regions of the same size are
linked together. To avoid being too fragmented, as many freel-
ists as predefined size classes (refer to the appendix in [21]) are
prepared during initialization. Whenever malloc() is called
with a request size, our allocator first rounds the request size
up to the closest predefined size class. The allocator then takes
a freelist corresponding to the size and performs the requested
allocation. If the corresponding freelist is empty, the allocator
acquires free regions matching the request size from a blue
zone and adds them to the freelist so that it can deal with
the allocation. Note here that such region acquisitions should
be performed under constraints C1 and C2. In order to meet
the constraints without requiring explicit checks, the allocator
efficiently acquires the maximum number of available free
regions from a blue zone, considering both the request size
and the size of the blue zone. For instance, if the request
size is 64 B, it takes advantage of the maximum number of
free regions available (14) since 14 × 64B < 4G B. However,
if the request size is 500 MB, it only takes 8 free regions,
as 8 × 500M B < 4G B.

To manage blue zones, the allocator defines three states,
UNUSED, ALLOCATED, and UNALLOCATED. The UNUSED
state implies that the blue zone is not yet used, so the allocator
can acquire free regions from it when a freelist is empty.
The ALLOCATED state indicates that free regions of the blue
zone have already been linked to a freelist and part or all
of them are allocated for objects. On the other hand, the
UNALLOCATED state means that all the linked free regions
are currently not allocated for objects. Initially, blue zones
are in the UNUSED state, and are used preferentially for

Authorized licensed use limited to: Seoul National University. Downloaded on October 04,2025 at 15:58:55 UTC from IEEE Xplore. Restrictions apply.

SEO et al.: ZOMETAG: ZONE-BASED MEMORY TAGGING FOR FAST, DETERMINISTIC DETECTION 4921

region acquisitions. However, if no UNUSED zones remain,
the allocator reclaims some UNALLOCATED zones as UNUSED
ones by removing all the links between their free regions and
freelists. If all UNUSED/UNALLOCATED zones are exhausted,
the allocator cannot perform region acquisitions anymore,
resulting in allocation failure.

C. Zone-Based Unsafe Stack

To protect stack objects, ZOMETAG relies on SafeStack,
which classifies stack objects into S-stack and U-stack ones.
Of the two types of objects, the primary focus of ZOMETAG is
to provide isolation specifically for objects within the U-stack
that have the potential for exploitation. By concentrating
on the U-stack, which is particularly vulnerable to attacks,
ZOMETAG aims to enhance the security of the application.
It ensures that these potentially exploitable U-stack objects
are isolated and protected, reducing the risk of compro-
mise and potential exploitation. Basically, it can be achieved
by allocating U-stack objects into the zone-based U-stack.
However, as discussed in Section IV-B, U-stack objects allo-
cated in the U-stack cannot be referenced using the offset
addressing because their offsets will vary at runtime. For
this reason, ZOMETAG makes all accesses to U-stack objects
be performed through separate pointers generated at run-
time. To do this, we modified the original implementation of
SafeStack. More specifically, we inserted calls to runtime func-
tions, _Ustack_growth_() and _Ustack_shrink_(),
at every function prologue and epilogue, respectively. The two
runtime functions are responsible for growing and shrinking
the U-stack by including and excluding blue zones dynami-
cally considering C1 and C2. The _Ustack_growth_()
function also plays an important role in creating pointers for
U-stack objects within the S-stack. This allows the U-stack
objects to be accessed using these pointers instead of relying
on offset addressing.

D. Zone-Based Global Object Allocations

To allocate global objects in blue zones, we utilize LLVM
and a linker. Specifically, our LLVM pass identifies all global
objects and determines their respective sizes. Taking into
account the constraints C1 and C2, each object is assigned
to a separate section, such as global_1, global_2, . . . ,
global_n. After compilation, the section information is
referred to generate a linker script that adjusts the position of
the global object sections along blue zones. Now, the linker
script is used for linking, and the global objects are placed
into blue zones when the program is loaded.

E. Instrumentations for Zone-Based Isolation

To enable zone-based isolation, we built an additional
LLVM pass that instruments all instructions, including pointer
arithmetic operations: e.g., arithmetic/bitwise instructions
(addition, subtraction, shift, xor, etc) that use a pointer as an
operand, and load/store instructions using pre- or post-indexed
addressing modes. As stated in Section IV-C, two types of
instrumentations are required: (1) replacing 64-bit operands

Fig. 3. Assembly code instrumented for ZOMETAG zone-based isolation.
Changed or inserted instructions are highlighted. (1) and (2) convert offset
operands to 32-bit registers, and (3) checks if a pointer points to a red zone
after pointer arithmetic.

register into 32-bit ones to limit the modification range of
pointer values to the zone size and (2) inserting a test-and-
branch instruction to test whether a modified pointer points
to a red zone. Figure 3 shows an example with both types
of instrumentations applied. As seen in the example, the
instrumentations of the first type rarely increase the number
of instructions, as many ARM instructions have a variant
that takes 32-bit registers with the prefix ‘w’ as the second
operand. For the instrumentations of the other type, TBZ or
TBNZ instructions can be used. The TBZ tests a specific bit
of the given operand register and performs a branch if the
bit is zero. The TBNZ is similar but performs a branch if the
bit is non-zero. So, inserting either a single TBZ or TBNZ
after each pointer arithmetic operator is enough to detect
erroneous pointer values pointing to a red zone. Note here
that as TBZ and TBNZ can perform a branch only in ±32
KB range, we inserted multiple identical abort routines for
violation detection throughout the program code. This ensures
that all instructions have a path to at least one of the abort
routines, allowing for effective detection of violations.

VI. EVALUATION

In this section, we evaluate ZOMETAG it in terms of effi-
ciency and security. To do this, we answered the following
question:

• How do we measure the performance overhead of MTE
without a real hardware implementation? (Section VI-A)

• How are the performance and memory overheads of
ZOMETAG in artificial benchmarks? (Section VI-B)

• How are the performance and memory overheads of
ZOMETAG in real-world applications? (Section VI-C)

• Is ZOMETAG effective in detecting spatial errors?
(Section VI-D)

• Is ZOMETAG secure against threats to neutralize it?
(Section VI-E)

Experimental Setup: At the time of researching this work,
no ARM cores (including M1 [22]) had implemented MTE.
For this reason, we used two different platforms to perform
evaluations. We first confirmed the functional correctness
of ZOMETAG by implementing its prototype on a soft-
ware emulator, ARM Fast Models [23], that supports the
ARMv8.5 architecture, including MTE. Unfortunately, the
emulator does not provide cycle-accurate execution. To mea-
sure performance numbers, therefore, we ported ZOMETAG

Authorized licensed use limited to: Seoul National University. Downloaded on October 04,2025 at 15:58:55 UTC from IEEE Xplore. Restrictions apply.

4922 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 4. Instructions for estimation of MTE overheads.

to a software development board, ODROID-C4 [24] with
Cortex A-55 quad-core CPU @ 2.0 GHz and 4 GB RAM.
Note here that since MTE is absent in the Cortex-A55 cores,
we estimated the performance impact of MTE on the system
as in Section VI-A.

A. Estimation of MTE Overheads

In MTE, most performance overheads come from (1) mem-
ory tag coloring and (2) tag matching operations. To estimate
MTE overheads, therefore, we mimicked these two types
of operations in software. Simply put, we reserved a large
memory region, and substituted all memory tag accesses with
ordinary memory accesses to the reserved memory region
(dummy tag memory, hereafter).

1) Memory Tag Coloring: These operations are performed
during object creation to fill corresponding tag memory
regions with 4-bit tags. As stated in Section II, ARM originally
provides special instructions to perform these operations, but
unfortunately, these special instructions were not available in
our experimental environment. Therefore, we estimated their
overheads by executing substitutive memory instructions that
write single bytes to the dummy tag memory (Figure 4.(a)).

2) Tag Matching: These operations to compare pointer tags
with memory tags are executed upon every memory access.
These operations are clearly divided into two sub-operations:
(1) tag loading and (2) tag comparison. Of these two sub-
operators, the latter operations that compare pointer tags with
memory tags incur negligible overhead because they are per-
formed by a separate hardware logic running simultaneously
with CPU cores [4]. On the other hand, the former operations
entail non-negligible overhead because they cause a program
to perform additional memory loads that fetch memory tags
to a cache proportionally to the number of memory accesses.
To estimate the tag loading overhead, we performed code
instrumentations in two methods. In method-1, instructions are
inserted to load a corresponding memory tag from the dummy
tag memory prior to each memory access (Figure 4.(b)).
However, considering the fact that, in a real implementation
of MTE, tag loading will be performed transparently by
an underlying hardware logic, i.e., tag cache, the method-1
exaggerates the tag loading overhead due to the inserted
instructions that increase pressure in the CPU’s functional
components, such as a fetcher, a decoder, an ALU, and a
memory unit. In this regard, to grasp the extra overhead caused
by the inserted instructions, we additionally carried out the
method-2 instrumentation (Figure 4.(c)). In the method-2, the
same instructions are inserted as in the method-1. However,
unlike in method-1, these instructions always load the same
memory tag from the constant location for each memory

access. After all, in method-2, since the memory tag will
always reside in the cache, we can measure the specific
overhead incurred in the CPU by the execution of the inserted
instructions, excluding the overhead of fetching memory tags
into the cache. As a result, by subtracting the overhead of
method-2 from that of method-1, we can determine the tag
loading overhead that occurs when fetching the memory tag
from the cache.

The estimation process described above does not consider
two cases: (1) reordering between a tag load and subsequent
memory access to be checked, and (2) thrashing issues in
TLB and cache between tag and ordinary memory accesses.
The first case does not harm the accuracy in our estimation
because, as stated earlier in Section II, ZOMETAG utilizes
MTE’s imprecise mode that performs tag comparisons and
mismatch detections asynchronously. Next, the second case
makes our estimation for the tag loading overhead conservative
and at least not optimistic because the case would not happen
or be minimized if dedicated TLB and cache are included in
a real implementation [1], [4].

B. Overheads on Artificial Benchmarks

1) Performance Overhead: First, to measure the perfor-
mance impact on single-threaded applications, we tested
ZOMETAG using SPEC CPU2006 benchmark suite [25]. Note
that, as will be discussed in Section VII, ZOMETAG has a
threshold on the maximum counts of live objects. It means
that ZOMETAG cannot support programs whose maximum live
object counts exceed the threshold, and in the benchmark
suite, perlbench, omnet++, and xalancbmk correspond
to such programs in question. For these benchmarks, therefore,
we used a train workset with reduced input size to run with
ZOMETAG. For the other benchmarks, we used the native ref
workset. The results are shown in Figure 5. In total, ZOMETAG
causes 35% geometric mean (geomean) runtime overhead.
We also compared the performance overhead of ZOMETAG

with SGXBounds [26] and LowFat [27], which are the latest
object-based spatial safety solutions applicable on ARM, and
AddressSanitizer, a popular solution for detecting memory
bugs shipped in commodity compilers (gcc and clang) [28].
For a fair comparison, we ported these competing solutions
to ARM and reproduced their performance numbers in our
experimental environment. To be specific, we first disabled
stack protections for both SGXBounds and LowFat due to
their architecture dependent operations for stack switching
and pivoting. We also turned off the optimizations based on
x86_64 specific instructions such as BMI since there were
no appropriate substitutions on ARM. The two changes men-
tioned will differently affect performance, but since the former

Authorized licensed use limited to: Seoul National University. Downloaded on October 04,2025 at 15:58:55 UTC from IEEE Xplore. Restrictions apply.

SEO et al.: ZOMETAG: ZONE-BASED MEMORY TAGGING FOR FAST, DETERMINISTIC DETECTION 4923

Fig. 5. SPEC CPU2006 for ZOMETAG: Performance (top) and memory (bottom) overheads over native execution.

Fig. 6. Comparison of the execution time on PARSEC.

one regarding stack is more deeply involved in the execution
of a program, the competing solutions will show less over-
head than their full-fledged implementations. When we ran
SGXBounds, we faced unexpected aborts/crashes in 6 out of
19 benchmarks due to its limited compatibility [29]. To obtain
performance numbers, therefore, we modified SGXBounds to
perform dummy sanity checks with unlimited bounds covering
the whole address space. Additionally, we applied a small
patch [30] on the benchmarks to prevent abrupt crashes when
running with the AddressSanitizer.

Overall, we can see that our design is (far) more efficient
than other solutions. ZOMETAG incurs less than half of the
overhead compared to SGXBounds, LowFat, and AddressSan-
itizer whose overheads are 94%, 86%, and 133%, respectively.
Overall, the overheads measured for our competing solutions
are higher than the results reported in their papers. This
is attributed to significant differences in experimental envi-
ronments of theirs and ours, such as architecture (x86_64
vs ARM), cache/memory size, and the number of CPU’s
functional components (load unit and ALU). ZOMETAG shows
a general increase in overhead as the number of live objects in
a program. This is expected because the objects are distributed
over sparsely placed zones in the program’s address space,
resulting in a large number of TLB misses. For example,
ZOMETAG showsalmost native runtime performance on the
mcf benchmark, which uses only 4 maximum live objects

during its execution, but shows 98% overhead on omnet++,
which has 436 K live objects.

For a more comprehensive understanding, we separately
measured the overheads by the four main sources. The results
are in Figure 8. We observe that tag-related overhead is a
predominant element with geomean 16%. This is expected
because tag operations involve a considerable number of mem-
ory accesses to tags. The overhead of the allocator is highly
dependent on the number of allocations of each program. This
is due to the fact that our allocator is not TLB-friendly by
allocating objects sparsely over a large address space. The
overhead of the zone-based isolation and that of applying
ZOMETAG to stack/global objects dependent on a program’s
characteristics. The former overhead is non-negligible on
pointer-intensive benchmarks as more bit-checking instruc-
tions should be inserted. The latter overhead is noticeable
when programs allocate many stack and global variables.

We also conducted a set of experiments with PARSEC
benchmark [31] to evaluate the scalability of ZOMETAG in
multithreaded programs. Figure 6 shows the performance
results of LowFat, AddressSanitizer and ZOMETAG in com-
parison to baseline. The geometric means of ZOMETAG,
Lowfat, and AddressSanitizer overheads to run concurrent
threads respectively range from 24.6% to 30%, 67.1% to
82.8%, and 93.7% to 101%. While most benchmarks have
fairly low overhead, freqmine suffers from a relatively

Authorized licensed use limited to: Seoul National University. Downloaded on October 04,2025 at 15:58:55 UTC from IEEE Xplore. Restrictions apply.

4924 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 7. Memory usage on PARSEC.

Fig. 8. Anatomy of Performance Overhead on SPEC CPU2006. The
legends indicate overhead sources. alloc: allocator, zone: zone-based isolation,
stack/global: applying ZOMETAG to stack/global objects, tag: memory tag
coloring and tag matching.

high overhead ranging from 53.7% to 75.2%. Our analysis
reveals that this overhead is attributed to the allocator side.
By default, freqmine uses a custom allocator that internally
allocates large objects in a reserved memory chunk without
going through expensive heap management functions. There-
fore, substituting ZOMETAG’s allocator for the default one
has adversely affected the overall performance. Nevertheless,
in PARSEC, ZOMETAG certainly incurs overhead less than half
compared to LowFat and AddressSanitizer. It demonstrates the
efficiency of ZOMETAG on multithreaded programs.

2) Memory Overhead: To evaluate the overall memory con-
sumption, we measured the maximum resident size reported
by time -v during the execution of the benchmarks. Accord-
ing to Figure 5, our geometric mean across all benchmarks
is 183% which is comparable to 133% of AddressSanitizer.
Figure 7 also shows the maximum resident set size (RSS)
values of the four experiment settings (baseline, ZOMETAG,
Lowfat, and AddressSanitizer) for PARSEC benchmarks.
The geometric mean of the overhead spans from 77.5% to
103% with ZOMETAG as we increase the number of threads
from 1 to 64. Note that it spans from 14.3% to 16.7% with
Lowfat and from 47.4% to 62.7% with AddressSanitizer.
The geometric mean of SGXBounds and LowFat over all
benchmarks is 5% and 4%, respectively, which is minimal,
as they require only a small amount of additional memory for
their metadata.

The degree of memory overheads caused by ZOMETAG
depends on the size of objects allocated in programs. Note
that when only small objects are allocated, ZOMETAG cannot
fully utilize pages in a zone due to the constraint C1. For
example, ZOMETAG entails relatively large memory overhead
in xalancbmk where the majority of the allocations are less
than 512 bytes in size. On the other hand, the memory over-
head is only a few percent for programs, such as sjeng and
lbm. This is because ZOMETAG can avoid wasting space in
pages despite the constraint C1. It indicates that ZOMETAG has
the most efficiency in both performance and memory aspects
when it runs with memory-intensive programs that tend to deal
with large objects like arrays. We believe that this fact does
not undermine the value of ZOMETAG considering that these
programs have been difficult to harden their security using
the existing techniques because of considerable performance
overheads, as shown in our experimental results stated earlier.

C. Overheads on Real World Applications

For the purpose of the performance evaluation and com-
patibility demonstration, we conducted additional evaluations
using real-world applications, including two web server appli-
cations (Nginx and lighttpd) and an in-memory key-value store
application (Memcached).

1) Memcached: We evaluated Memcached v1.4.15 [32]
using the memaslp benchmark shipped with libmemcached
v1.0.18 client. The benchmark was performed requesting SET
and GET operations in a proportion of 1 to 9 over a
1Gbits/s link. The results are shown in Figure 9. On average,
we observed a 13% decrease in throughput, which decreased
to 4% when saturation was reached. In comparison, Low-
Fat and AddressSanitizer showed a 22% and 23% decrease,
respectively.

2) Web Server Applications: Nginx, Lighttpd: We also
conducted tests on web server applications, specifically
Nginx v1.4.0 [33] and Lighttpd v1.4.59 [34], using
ApacheBench [35]. During the tests, we gradually increased
the concurrency of the benchmark to simulate an increasing
number of concurrent clients, as shown in Figure 9. For Nginx,
ZOMETAG achieved a throughput of 94%, outperforming

Authorized licensed use limited to: Seoul National University. Downloaded on October 04,2025 at 15:58:55 UTC from IEEE Xplore. Restrictions apply.

SEO et al.: ZOMETAG: ZONE-BASED MEMORY TAGGING FOR FAST, DETERMINISTIC DETECTION 4925

Fig. 9. Performance overhead on real-world applications.

Fig. 10. The effectiveness of ZOMETAG in detecting spatial errors.

AddressSanitizer and LowFat, which achieved 57% and 67%
throughput, respectively. Lighttpd showed a similar pattern
to Nginx. In the case of Lighttpd, LowFat had the highest
overhead, reaching only 60% throughput on average compared
to the native build with gcc, while AddressSanitizer achieved
63%. ZOMETAG achieved an average throughput of 80%, with
a negligible drop of 2% when servicing up to 8 concurrent
clients.

D. Effectiveness in Detecting Spatial Errors

To evaluate the effectiveness of ZOMETAG in detecting
spatial errors, we selected real programs with spatial errors
from BugBench [36]. We compiled the BugBench benchmark
suite with ZOMETAG and executed it using various input sets.
As shown in Figure 10, itBug type indicates the location of
the overflow, whether it occurred in the heap, stack, or global
memory. In Detected, Tag-based and Zone-based indicate
the techniques used by ZOMETAG to detect the errors. Tag-
based detection involves matching tags within the same zone,
while Zone-based detection identifies violations of inter-zone
isolation. For example, in the case of bc-1.06, it contains
a heap/global buffer overflow. Specifically, in the case of a
heap overflow, an element (id->a_name) may exceed the
boundaries of heap objects (a_names). We detected a poten-
tial crash by identifying inconsistent tag values when accessing
beyond the boundary of an object. With the zone-based
isolation technique, we can detect spatial safety violations
even if pointer arithmetic operations lead to access outside the
designated zone. In the case of global overflow, we detected
that the source of sprintf, originating from the input
file, may exceed the length of 80 characters. Furthermore,
we also identified access to other objects beyond the bound-
ary of genstr. Similarly, we discovered global overflow
vulnerabilities in gzip-1.2.4 and polymorph-0.4.0
that arise when inputting a long file name. By constraining
memory access to objects with matching tag values, we were
able to successfully detect these vulnerabilities. In the cases
of ncompress and polymorph-0.4.0, the excessively

long input file name would overflow the array (tempname,
newname), ultimately overwriting the stack return address
with the overflowed stack array. As mentioned in Section V-C,
we allocate stack objects in the zone-based US (U-stack). This
ensures that the return address cannot be overwritten and the
value of stack variables cannot be manipulated. In the case
of man-1.5h1, there is a stack array overflow bug within a
for-loop caused by an incorrect loop exit condition. This can
result in overflow when long inputs are provided. However,
we can easily detect this scenario through tag matching,
thereby preventing any potential exploitation.

E. Security Analysis

In the threat model described in Section III, we assume
that the metadata of ZOMETAG and the control flow of a
program remain intact, ensuring spatial safety enforced by
ZOMETAG. This implies that attackers are unable to disable
or bypass ZOMETAG’s two-layer isolation mechanism, which
relies on its own memory allocation strategies and code instru-
mentations. Therefore, the only way attackers can undermine
ZOMETAG’s security is by manipulating pointers, specifically
their address values and tags. To do this, attackers may attempt
to abuse pointer arithmetic operations to manipulate pointers.
However, ZOMETAG’s zone-based isolation, which instruments
all pointer arithmetic operations, effectively prevents such
attacks. Instead, attackers may try to manipulate pointers by
causing sub-object spatial errors within the same objects.
While ZOMETAG, like other studies focusing on spatial safety
at object boundaries for higher compatibility with C/C++

programming practices, does not explicitly address sub-object
spatial errors, it still provides a probabilistic defense against
them due to its reliance on MTE. Unlike other studies that
may be powerless against sub-object spatial errors, ZOMETAG
has the advantage of probabilistically thwarting such attacks
through its integration with MTE.

VII. DISCUSSION

A. Limitations on Object Size and Count

We admit that our two-layer isolation mechanism inevitably
limits the maximum size of each object as ZOMETAG cannot
allocate an object of size larger than the zone size (4 GB). But
we argue that this limitation is acceptable in practice since a
single object of such a huge size is not common in real-world
programs.

As another concern about our mechanism, ZOMETAG limits
the number of objects that can be allocated in a program. To be
specific, ZOMETAG imposes restrictions on object counts per
blue zone, and the finite virtual address space of a program

Authorized licensed use limited to: Seoul National University. Downloaded on October 04,2025 at 15:58:55 UTC from IEEE Xplore. Restrictions apply.

4926 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

Fig. 11. The maximum and total numbers of object allocations in real-world
applications.

can accommodate only a limited number of blue zones. A blue
zone can contain up to 14 objects, and pairs of blue and
red zones of 2 × 232 B can exist in a program’s virtual
address space, which is at most 248 B on ARM architectures.
In an optimistic calculation, 14 × 215

= 458, 752 objects,
including heap, stack, and global ones, can be allocated
in a program. It is important to note that, as ZOMETAG
allows dynamic object (de-)allocations, the calculated number
indicates the largest possible number of live objects that can
exist simultaneously during program execution. As ZOMETAG
could not support some benchmarks of SPEC CPU2006 (3 out
of 19 benchmarks) and PARSEC (1 out of 18 benchmarks),
we admit that this number is not good enough to run all
types of applications. However, we still have confidence in
the usefulness of ZOMETAG since it can be applied to a broad
spectrum of applications. In our experiments, we observed that
three real-world applications (Nginx, lighttpd and memcached)
could run with ZOMETAG. For other real-world applications,
we measured the maximum numbers of live objects, and
the results reported in Figure 11 show that ZOMETAG can
support all these applications, given their maximum possible
live object counts, which is far less than the number of objects
in which ZOMETAG can accommodate.

To run applications with a lot of live objects, we can employ
SafeStack-like techniques classifying objects into (unex-
ploitable) safe and (exploitable) unsafe ones for heap and
global objects as well as stack objects as done in Section IV.
In many studies [37], [38], these techniques have been used
to reduce runtime overhead by eliminating sanity checks for
safe objects. In ZOMETAG, however, these techniques can help
protect as many more unsafe objects through its two-layer
mechanism as the number of objects classified as safe.

B. Compatibility

A tagged pointer scheme that stores metadata inside pointers
has been widely used in many studies [26], [29]. The scheme
enables efficient metadata management. However, it can some-
times reveal compatibility issues [29] that lead to program
crashes. These compatibility issues arise due to programming
and compiler optimizations that do not consider in-pointer
metadata. For example, issues can occur when in-pointer
metadata is unintentionally modified by pointer arithmetic
operators or when pointers generated by uninstrumented exter-
nal libraries do not include the necessary metadata.

In that MTE takes advantage of the tagged pointer scheme,
ZOMETAG is potentially subjected to such compatibility issues
as well, but the design of ZOMETAG inherently mitigates
them. For example, in ZOMETAG, its in-pointer metadata,

pointer tags, are always preserved in pointer arithmetic thanks
to the zone-based isolation that limits the range of address
values in pointer arithmetic. Also, when untagged pointers are
produced and used by uninstrumented libraries, the program
to which ZOMETAG is applied still can run without crashes.
This is because such untagged pointers (i.e., tagged with 0)
have access to the whole program memory, as explained
in Section II. In response to other cases that may cause
compatibility issues, we can refer to the previous work [29]
that already discussed various scenarios and proposed feasible
solutions.

VIII. RELATED WORK

A. Low-Fat Pointer Approach

LowFat [21], [27], SGXbounds [26] and Delta Pointers [29]
have proposed a low-fat pointer scheme that embeds bounds
metadata within the 64-bit pointer representation. LowFat
divides the virtual address space into evenly distributed regions
and performs bounds checks by utilizing the bounds informa-
tion derived from the region index in the upper bits of the
pointer. Similarly, ZOMETAG also partitions the virtual address
space into zones. However, unlike LowFat, ZOMETAG parti-
tions the virtual address space into zones but does not need to
perform explicit bounds checks due to its two-layer isolation
mechanism, resulting in improved efficiency. SGXBounds
alters the pointer representation to store its upper bounds
in the upper 32 bits of the pointer. Due to such a change,
it can use only 4GB of the virtual address space in a pro-
gram. In comparison, ZOMETAG also encodes an MTE tag
to the upper part of the pointer, but in ZOMETAG, the total
usable address space is not limited to 4 GB. Furthermore,
SGXBounds requires additional memory operations to retrieve
lower bounds as they are stored separately, while ZOMETAG
avoids this overhead. Deltapointers also modifies the pointer
representation to include the distance from the current pointer
to the end of the object, known as the delta tag, in higher bits.
It detects spatial errors by observing overflow in the delta tag
when the pointer points to an out-of-bounds address. However,
Deltapointers cannot detect spatial memory violations beyond
the lower bound, whereas ZOMETAG is capable of detecting
such violations.

BIMA [39], No-FAT [40], and AOS [41] have proposed
hardware-supported BC scheme. Specifically, these approaches
involve add special hardware components (e.g., bounds check-
ing module) to the microarchitecture. They also introduce
dedicated instructions for performing bounds checks effi-
ciently. As a result of this hardware support, they have
achieved efficient spatial memory safety, with AOS achieving
an 8.6% overhead and No-FAT achieving an 8% overhead.
However, the aggressive changes required in the hardware
design limit the immediate practicality and adoption of these
approaches. On the other hand, ZOMETAG does not require any
modifications to the hardware and can be applied to systems
that provide MTE of the ARM architecture. Since ARM is a
widely used processor architecture in mobile and embedded
systems, ZOMETAG can be more easily utilized without the
need for extensive hardware changes.

Authorized licensed use limited to: Seoul National University. Downloaded on October 04,2025 at 15:58:55 UTC from IEEE Xplore. Restrictions apply.

SEO et al.: ZOMETAG: ZONE-BASED MEMORY TAGGING FOR FAST, DETERMINISTIC DETECTION 4927

B. Red Zone Approach

There are existing approaches, such as AddressSani-
tizer [12] and LBC [42], that use red zones around memory
objects to detect spatial memory errors. Specifically, this
approach consists of the following steps. First, they install red
zones between memory objects. Then, whenever the pointer
is dereferenced, they check whether the accessed memory
address is in the red zone or not. Our zone-based isolation
is also inspired by the red zone approach. However, there are
several differences between existing studies and ZOMETAG in
terms of how the red zone is used. First, in ZOMETAG, the
red zone is placed between the blue zones, not between each
memory object. In other words, the purpose of the red zone in
ZOMETAG is to detect erroneous memory accesses that cross
zone boundaries. Additionally, ZOMETAG is able to detect red
zone violations by instrumenting pointer arithmetic operations.

C. Memory Tagging Approach

There have been various studies, such as Loki [43] and
CHERI [44], that enforce spatial memory safety using Tagged
Memory Architectures (TMA). These approaches assign tags
to pointers and memory objects, allowing memory access
only when the tag values of the pointer and target memory
address match. The security guarantees of these approaches are
determined by the size of the tags. For this reason, existing
TMA studies utilize a considerable size of storage for tags.
For example, CHERI [44] uses 128-bit for fat pointer, and
Loki [43] PUMP [45] support 64-bit tags. However, such an
extensive size of tags has not been utilized in commodity
processors due to hardware cost and performance issues.
Instead, in real-world scenarios, processors typically use a
small number of tags, e.g., ARM MTE provides 4-bit tags.
ZOMETAG is the first work that demonstrates deterministic
spatial memory safety with such a limited number of tags.

D. Software Fault Isolation (SFI)

CHANCEL [46] and TDI [47] have proposed Software
Fault Isolation (SFI) schemes to limit unauthorized memory
accesses by modifying the memory layout. First, while servic-
ing requests, CHANCEL reserves a per-thread private memory
region for storing sensitive and a shared read-only memory
region. Then, it applies SFI to isolate a thread from each
other by instrumenting code for spatial safety. TDI enforces
type-based data isolation, which allocates an area of memory,
called arena, based on pointer types. Conceptually, their
arena corresponds to our zone. Therefore, TDI is related to
ZOMETAG in that both employ the zone/arena-based isolation
mechanism. However, there are clear differences because TDI
requires an additional instruction for masking to restrict the
arena boundaries, whereas pointer arithmetic in ZOMETAG
does not require additional instructions by forcing the use of a
32-bit register as an operand to the offset value. Furthermore,
TDI that enforces type-safety cannot defend against overflows
that occur within the same memory region, whereas ZOMETAG
can detect using different tags between objects that can cause
spatial errors in the same region. This gives ZOMETAG the

advantage of being more efficient than TDI and providing
complete memory safety.

IX. CONCLUSION

ARM MTE is expected to offer architectural support for
the development of efficient MT solutions to ensure memory
safety. Unfortunately, in reality, however, being subject to
hardware limitations, it cannot afford enough physical tags
to isolate objects for a fast, deterministic safety guarantee. To
overcome the shortage of tags, ZOMETAG extends the notion
of a tag to form pairs of a zone and an MTE tag as the
new tags used for object isolation. The maximum count of
these extended tags (i.e., zone-tag pairs) is technically equal
to the number of zones multiplied by that of MTE tags. Since
there is an abundant number of zones available on modern
64-bit machines, ZOMETAG is able to supply enough tags to
uniquely assign to virtually all program objects at runtime,
as empirically demonstrated in this paper. We have discussed
how ZOMETAG deterministically enforces spatial safety with
the two-layer isolation mechanism that prevents a pointer from
referring to the object assigned a zone-tag pair different from
what it is currently assigned. Not only that, our experiments
prove that by taking full advantage of ARM’s support for our
zone-based memory tagging, ZOMETAG manages to achieve
spatial safety with relatively lower overhead than existing
solutions.

REFERENCES

[1] A. Holdings, “ARM architecture reference manual, ARMv8, for
ARMv8—A architecture profile,” ARM, Cambridge, U.K., Tech. Rep.
ARM DDI 0487F.b (ID040120), 2021.

[2] K. Aingaran et al., “M7: Oracle’s next-generation Sparc processor,”
IEEE Micro, vol. 35, no. 2, pp. 36–45, Mar. 2015.

[3] P. Nasahl, R. Schilling, M. Werner, J. Hoogerbrugge, M. Medwed,
and S. Mangard, “CrypTag: Thwarting physical and logical memory
vulnerabilities using cryptographically colored memory,” in Proc. ACM
Asia Conf. Comput. Commun. Secur., May 2021, pp. 200–212.

[4] A. Holdings. ARMv8.5-A Memory Tagging Extension.
Accessed: May 2023. [Online]. Available: https://developer.arm.com/-/
media/Arm%20Developer%20Community/PDF/Arm_Memory_
Tagging_Extension_Whitepaper.pdf

[5] N. Burow, D. McKee, S. A. Carr, and M. Payer, “CUP: Comprehensive
user-space protection for C/C++,” in Proc. Asia Conf. Comput. Commun.
Secur., May 2018, pp. 381–392.

[6] G. J. Duck and R. H. C. Yap, “EffectiveSan: Type and mem-
ory error detection using dynamically typed C/C++,” in Proc. 39th
ACM SIGPLAN Conf. Program. Lang. Design Implement., Jun. 2018,
pp. 181–195.

[7] T. Kroes, K. Koning, C. Giuffrida, H. Bos, and E. van der Kouwe, “Fast
and generic metadata management with mid-fat pointers,” in Proc. 10th
Eur. Workshop Syst. Secur., Apr. 2017, pp. 1–6.

[8] D. Chisnall et al., “Beyond the PDP-11: Architectural support for a
memory-safe C abstract machine,” ACM SIGARCH Comput. Archit.
News, vol. 43, no. 1, pp. 117–130, 2015.

[9] O. Oleksenko, D. Kuvaiskii, P. Bhatotia, P. Felber, and C. Fetzer, “Intel
MPX explained: An empirical study of Intel MPX and software-based
bounds checking approaches,” 2017, arXiv:1702.00719.

[10] G. S. Kc, A. D. Keromytis, and V. Prevelakis, “Countering code-
injection attacks with instruction-set randomization,” in Proc. 10th ACM
Conf. Comput. Commun. Secur., Oct. 2003, pp. 272–280.

[11] A. Francillon and C. Castelluccia, “Code injection attacks on Harvard-
architecture devices,” in Proc. 15th ACM Conf. Comput. Commun.
Secur., Oct. 2008, pp. 15–26.

[12] K. Serebryany, D. Bruening, A. Potapenko, and D. Vyukov, “Address-
Sanitizer: A fast address sanity checker,” in Proc. USENIX Annu. Tech.
Conf. (USENIX), 2012, pp. 309–318.

[13] B. Lee et al., “Preventing use-after-free with dangling pointers nullifi-
cation,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2015, pp. 1–15.

Authorized licensed use limited to: Seoul National University. Downloaded on October 04,2025 at 15:58:55 UTC from IEEE Xplore. Restrictions apply.

4928 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 18, 2023

[14] E. van der Kouwe, V. Nigade, and C. Giuffrida, “DangSan: Scalable use-
after-free detection,” in Proc. 12th Eur. Conf. Comput. Syst., Apr. 2017,
pp. 405–419.

[15] J. Shin, D. Kwon, J. Seo, Y. Cho, and Y. Paek, “CRCount: Pointer
invalidation with reference counting to mitigate use-after-free in legacy
C/C++,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2019, pp. 1–15.

[16] I. Haller et al., “TypeSan: Practical type confusion detection,” in Proc.
ACM SIGSAC Conf. Comput. Commun. Secur., Oct. 2016, pp. 517–528.

[17] C. Meadows, “A procedure for verifying security against type confu-
sion attacks,” in Proc. 16th IEEE Comput. Secur. Found. Workshop,
Jun. 2003, pp. 62–72.

[18] M. Seaborn and T. Dullien, “Exploiting the DRAM rowhammer bug to
gain kernel privileges,” Black Hat, vol. 15, p. 71, Mar. 2015.

[19] V. van der Veen et al., “Drammer: Deterministic rowhammer attacks
on mobile platforms,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct. 2016, pp. 1675–1689.

[20] G. Chen et al., “SafeStack: Automatically patching stack-based buffer
overflow vulnerabilities,” IEEE Trans. Depend. Secure Comput., vol. 10,
no. 6, pp. 368–379, Nov. 2013.

[21] G. J. Duck, R. H. C. Yap, and L. Cavallaro, “Stack bounds protection
with low fat pointers,” in Proc. Netw. Distrib. Syst. Secur. Symp., 2017,
pp. 1–15.

[22] A. Holdings. Cortex-m1. Accessed: May 2023. [Online]. Available:
https://www.arm.com/products/silicon-ip-cpu/cortex-m/cortex-m1

[23] A. Holdings. Fast Models. Accessed: May 2023. [Online]. Available:
https://developer.arm.com/tools-and-software/simulation-models/
fast-models

[24] Odroid. Odroid-c4. Accessed: May 2023. [Online]. Available:
https://wiki.odroid.com/odroid-c4/odroid-c4

[25] Spec2006. Spec2006. Accessed: May 2023. [Online]. Available:
https://www.spec.org/cpu2006/

[26] D. Kuvaiskii et al., “SGXBOUNDS: Memory safety for shielded execu-
tion,” in Proc. 12th Eur. Conf. Comput. Syst., Apr. 2017, pp. 205–221.

[27] G. J. Duck and R. H. C. Yap, “Heap bounds protection with low fat
pointers,” in Proc. 25th Int. Conf. Compiler Construction, Mar. 2016,
pp. 132–142.

[28] AddressSanitizer. AddressSanitizer. Accessed: May 2023. [Online].
Available: https://clang.llvm.org/docs/AddressSanitizer.html

[29] T. Kroes, K. Koning, E. van der Kouwe, H. Bos, and C. Giuffrida,
“Delta pointers: Buffer overflow checks without the checks,” in Proc.
13th EuroSys Conf., 2018, pp. 1–14.

[30] AddressSanitizer. AddressSanitizer. Accessed: May 2023. [Online].
Available: https://github.com/vusec/instrumentation-infra/blob/master/
infra/targets/spec2006/asan.patch

[31] PARSEC. The Parsec Benchmark Suite. Accessed: May 2023. [Online].
Available: https://parsec.cs.princeton.edu

[32] Memcached. Memcached. Accessed: May 2023. [Online].
Available: https://rpmfind.net/linux/RPM/centos/7.9.2009/x86_64/
Packages/memcached-1.4.15-10.el7_3.1.x86_64.html

[33] Nginx. Ningx-1.4.0. Accessed: May 2023. [Online]. Available:
http://nginx.org/en/download.html

[34] Lighttpd. Lighttpd. Accessed: May 2023. [Online]. Available:
https://www.lighttpd.net/2016/7/16/1.4.40/

[35] Apache. Apache Http Server Benchmarking Tool. Accessed: May 2023.
[Online]. Available: https://httpd.apache.org/docs/2.4/programs/ab.html

[36] S. Lu, Z. Li, F. Qin, L. Tan, P. Zhou, and Y. Zhou, “BugBench:
Benchmarks for evaluating bug detection tools,” in Proc. Workshop Eval.
Softw. Defect Detection Tools, vol. 5. Chicago, IL, USA, 2005, pp. 1–5.

[37] V. Kuznetzov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and D. Song,
“Code-pointer integrity,” in The Continuing Arms Race: Code-Reuse
Attacks Defenses. New York, NY, USA: Association for Computing
Machinery, 2018, pp. 81–116.

[38] A. Khan, H. Kim, B. Lee, D. Xu, A. Bianchi, and D. J. Tian, “M2MON:
Building an MMIO-based security reference monitor for unmanned
vehicles,” in Proc. 30th {USENIX} Secur. Symp. ({USENIX} Secur.),
2021, pp. 285–302.

[39] A. Kwon, U. Dhawan, J. M. Smith, T. F. Knight, and A. DeHon, “Low-
fat pointers: Compact encoding and efficient gate-level implementation
of fat pointers for spatial safety and capability-based security,” in
Proc. ACM SIGSAC Conf. Comput. Commun. Secur. (CCS), 2013,
pp. 721–732.

[40] M. T. I. Ziad, M. A. Arroyo, E. Manzhosov, R. Piersma, and
S. Sethumadhavan, “No-FAT: Architectural support for low overhead
memory safety checks,” in Proc. ACM/IEEE 48th Annu. Int. Symp.
Comput. Archit. (ISCA), Jun. 2021, pp. 916–929.

[41] Y. Kim, J. Lee, and H. Kim, “Hardware-based always-on heap memory
safety,” in Proc. 53rd Annu. IEEE/ACM Int. Symp. Microarchitecture
(MICRO), Oct. 2020, pp. 1153–1166.

[42] N. Hasabnis, A. Misra, and R. Sekar, “Light-weight bounds checking,”
in Proc. 10th Int. Symp. Code Gener. Optim., Mar. 2012, pp. 135–144.

[43] N. Zeldovich, H. Kannan, M. Dalton, and C. Kozyrakis, “Hardware
enforcement of application security policies using tagged memory,” in
Proc. OSDI, vol. 8, 2008, pp. 225–240.

[44] J. Woodruff et al., “CHERI concentrate: Practical compressed capabili-
ties,” IEEE Trans. Comput., vol. 68, no. 10, pp. 1455–1469, Oct. 2019.

[45] U. Dhawan et al., “Architectural support for software-defined metadata
processing,” in Proc. 20th Int. Conf. Architectural Support Program.
Lang. Operating Syst., Mar. 2015, pp. 487–502.

[46] A. Ahmad, J. Kim, J. Seo, I. Shin, P. Fonseca, and B. Lee, “CHANCEL:
Efficient multi-client isolation under adversarial programs,” in Proc.
Netw. Distrib. Syst. Secur. Symp., 2021, pp. 1–18.

[47] A. Milburn, E. Van Der Kouwe, and C. Giuffrida, “Mitigating infor-
mation leakage vulnerabilities with type-based data isolation,” in Proc.
IEEE Symp. Secur. Privacy (SP), May 2022, pp. 1049–1065.

Jiwon Seo received the B.S. degree in electrical
and computer engineering from Seoul Women’s
University, South Korea, in 2016, and the Ph.D.
degree in electrical and computer engineering from
Seoul National University, South Korea, in 2023.
Her research interests include the system security
against various types of threats.

Junseung You received the B.S. degree in electrical
and computer engineering from Seoul National Uni-
versity, South Korea, in 2019, where he is currently
pursuing the Ph.D. degree in electrical and com-
puting engineering. His research interests include
system security against various types of threats.

Donghyun Kwon received the B.S. and Ph.D.
degrees in electrical and computer engineering from
Seoul National University, South Korea, in 2012 and
2019, respectively. He is currently a Professor with
the School of Computer Science and Engineer-
ing, Pusan National University, South Korea. His
research interests include the system security against
various types of threats.

Yeongpil Cho received the B.S. degree in elec-
trical engineering from POSTECH, South Korea,
in 2010, and the Ph.D. degree in electrical and com-
puter engineering from Seoul National University,
South Korea, in 2018. Currently, he is a Professor
with the Department of Computer Science, Hanyang
University. His research interests include the system
security against various types of threats.

Yunheung Paek (Member, IEEE) received the B.S.
and M.S. degrees in computer engineering from
Seoul National University, South Korea, in 1988 and
1990, respectively, and the Ph.D. degree in computer
science from the University of Illinois at Urbana-
Champaign in 1997. Currently, he is a Professor
with the Department of Electrical and Computer
Engineering, Seoul National University. His research
interests include system security with hardware,
the secure processor design against various types
of threats, and machine learning-based security
solution.

Authorized licensed use limited to: Seoul National University. Downloaded on October 04,2025 at 15:58:55 UTC from IEEE Xplore. Restrictions apply.

